Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 19-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvneln0.o | |- .0. = ( 0g ` W ) |
|
| lssvneln0.s | |- S = ( LSubSp ` W ) |
||
| lssvneln0.w | |- ( ph -> W e. LMod ) |
||
| lssvneln0.u | |- ( ph -> U e. S ) |
||
| lssvneln0.n | |- ( ph -> -. X e. U ) |
||
| Assertion | lssvneln0 | |- ( ph -> X =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvneln0.o | |- .0. = ( 0g ` W ) |
|
| 2 | lssvneln0.s | |- S = ( LSubSp ` W ) |
|
| 3 | lssvneln0.w | |- ( ph -> W e. LMod ) |
|
| 4 | lssvneln0.u | |- ( ph -> U e. S ) |
|
| 5 | lssvneln0.n | |- ( ph -> -. X e. U ) |
|
| 6 | 1 2 | lss0cl | |- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |
| 7 | 3 4 6 | syl2anc | |- ( ph -> .0. e. U ) |
| 8 | eleq1a | |- ( .0. e. U -> ( X = .0. -> X e. U ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( X = .0. -> X e. U ) ) |
| 10 | 9 | necon3bd | |- ( ph -> ( -. X e. U -> X =/= .0. ) ) |
| 11 | 5 10 | mpd | |- ( ph -> X =/= .0. ) |