Step |
Hyp |
Ref |
Expression |
1 |
|
lssvs0or.v |
|- V = ( Base ` W ) |
2 |
|
lssvs0or.t |
|- .x. = ( .s ` W ) |
3 |
|
lssvs0or.f |
|- F = ( Scalar ` W ) |
4 |
|
lssvs0or.k |
|- K = ( Base ` F ) |
5 |
|
lssvs0or.o |
|- .0. = ( 0g ` F ) |
6 |
|
lssvs0or.s |
|- S = ( LSubSp ` W ) |
7 |
|
lssvs0or.w |
|- ( ph -> W e. LVec ) |
8 |
|
lssvs0or.u |
|- ( ph -> U e. S ) |
9 |
|
lssvs0or.x |
|- ( ph -> X e. V ) |
10 |
|
lssvs0or.a |
|- ( ph -> A e. K ) |
11 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
12 |
7 11
|
syl |
|- ( ph -> F e. DivRing ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> F e. DivRing ) |
14 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> A e. K ) |
15 |
|
simpr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> A =/= .0. ) |
16 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
17 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
18 |
|
eqid |
|- ( invr ` F ) = ( invr ` F ) |
19 |
4 5 16 17 18
|
drnginvrl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
20 |
13 14 15 19
|
syl3anc |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
21 |
20
|
oveq1d |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
22 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
23 |
7 22
|
syl |
|- ( ph -> W e. LMod ) |
24 |
23
|
ad2antrr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> W e. LMod ) |
25 |
4 5 18
|
drnginvrcl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( invr ` F ) ` A ) e. K ) |
26 |
13 14 15 25
|
syl3anc |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( invr ` F ) ` A ) e. K ) |
27 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X e. V ) |
28 |
1 3 2 4 16
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( ( invr ` F ) ` A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
29 |
24 26 14 27 28
|
syl13anc |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
30 |
1 3 2 17
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
31 |
24 27 30
|
syl2anc |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( 1r ` F ) .x. X ) = X ) |
32 |
21 29 31
|
3eqtr3rd |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
33 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> U e. S ) |
34 |
|
simplr |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( A .x. X ) e. U ) |
35 |
3 2 4 6
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( ( ( invr ` F ) ` A ) e. K /\ ( A .x. X ) e. U ) ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) e. U ) |
36 |
24 33 26 34 35
|
syl22anc |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) e. U ) |
37 |
32 36
|
eqeltrd |
|- ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X e. U ) |
38 |
37
|
ex |
|- ( ( ph /\ ( A .x. X ) e. U ) -> ( A =/= .0. -> X e. U ) ) |
39 |
38
|
necon1bd |
|- ( ( ph /\ ( A .x. X ) e. U ) -> ( -. X e. U -> A = .0. ) ) |
40 |
39
|
orrd |
|- ( ( ph /\ ( A .x. X ) e. U ) -> ( X e. U \/ A = .0. ) ) |
41 |
40
|
orcomd |
|- ( ( ph /\ ( A .x. X ) e. U ) -> ( A = .0. \/ X e. U ) ) |
42 |
|
oveq1 |
|- ( A = .0. -> ( A .x. X ) = ( .0. .x. X ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ A = .0. ) -> ( A .x. X ) = ( .0. .x. X ) ) |
44 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
45 |
1 3 2 5 44
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( .0. .x. X ) = ( 0g ` W ) ) |
46 |
23 9 45
|
syl2anc |
|- ( ph -> ( .0. .x. X ) = ( 0g ` W ) ) |
47 |
44 6
|
lss0cl |
|- ( ( W e. LMod /\ U e. S ) -> ( 0g ` W ) e. U ) |
48 |
23 8 47
|
syl2anc |
|- ( ph -> ( 0g ` W ) e. U ) |
49 |
46 48
|
eqeltrd |
|- ( ph -> ( .0. .x. X ) e. U ) |
50 |
49
|
adantr |
|- ( ( ph /\ A = .0. ) -> ( .0. .x. X ) e. U ) |
51 |
43 50
|
eqeltrd |
|- ( ( ph /\ A = .0. ) -> ( A .x. X ) e. U ) |
52 |
23
|
adantr |
|- ( ( ph /\ X e. U ) -> W e. LMod ) |
53 |
8
|
adantr |
|- ( ( ph /\ X e. U ) -> U e. S ) |
54 |
10
|
adantr |
|- ( ( ph /\ X e. U ) -> A e. K ) |
55 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
56 |
3 2 4 6
|
lssvscl |
|- ( ( ( W e. LMod /\ U e. S ) /\ ( A e. K /\ X e. U ) ) -> ( A .x. X ) e. U ) |
57 |
52 53 54 55 56
|
syl22anc |
|- ( ( ph /\ X e. U ) -> ( A .x. X ) e. U ) |
58 |
51 57
|
jaodan |
|- ( ( ph /\ ( A = .0. \/ X e. U ) ) -> ( A .x. X ) e. U ) |
59 |
41 58
|
impbida |
|- ( ph -> ( ( A .x. X ) e. U <-> ( A = .0. \/ X e. U ) ) ) |