| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lssvs0or.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lssvs0or.t |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | lssvs0or.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | lssvs0or.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | lssvs0or.o |  |-  .0. = ( 0g ` F ) | 
						
							| 6 |  | lssvs0or.s |  |-  S = ( LSubSp ` W ) | 
						
							| 7 |  | lssvs0or.w |  |-  ( ph -> W e. LVec ) | 
						
							| 8 |  | lssvs0or.u |  |-  ( ph -> U e. S ) | 
						
							| 9 |  | lssvs0or.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | lssvs0or.a |  |-  ( ph -> A e. K ) | 
						
							| 11 | 3 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 12 | 7 11 | syl |  |-  ( ph -> F e. DivRing ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> F e. DivRing ) | 
						
							| 14 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> A e. K ) | 
						
							| 15 |  | simpr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> A =/= .0. ) | 
						
							| 16 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 18 |  | eqid |  |-  ( invr ` F ) = ( invr ` F ) | 
						
							| 19 | 4 5 16 17 18 | drnginvrl |  |-  ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) | 
						
							| 20 | 13 14 15 19 | syl3anc |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( 1r ` F ) .x. X ) ) | 
						
							| 22 |  | lveclmod |  |-  ( W e. LVec -> W e. LMod ) | 
						
							| 23 | 7 22 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> W e. LMod ) | 
						
							| 25 | 4 5 18 | drnginvrcl |  |-  ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( invr ` F ) ` A ) e. K ) | 
						
							| 26 | 13 14 15 25 | syl3anc |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( invr ` F ) ` A ) e. K ) | 
						
							| 27 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X e. V ) | 
						
							| 28 | 1 3 2 4 16 | lmodvsass |  |-  ( ( W e. LMod /\ ( ( ( invr ` F ) ` A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) | 
						
							| 29 | 24 26 14 27 28 | syl13anc |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) | 
						
							| 30 | 1 3 2 17 | lmodvs1 |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) | 
						
							| 31 | 24 27 30 | syl2anc |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( 1r ` F ) .x. X ) = X ) | 
						
							| 32 | 21 29 31 | 3eqtr3rd |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) | 
						
							| 33 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> U e. S ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( A .x. X ) e. U ) | 
						
							| 35 | 3 2 4 6 | lssvscl |  |-  ( ( ( W e. LMod /\ U e. S ) /\ ( ( ( invr ` F ) ` A ) e. K /\ ( A .x. X ) e. U ) ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) e. U ) | 
						
							| 36 | 24 33 26 34 35 | syl22anc |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) e. U ) | 
						
							| 37 | 32 36 | eqeltrd |  |-  ( ( ( ph /\ ( A .x. X ) e. U ) /\ A =/= .0. ) -> X e. U ) | 
						
							| 38 | 37 | ex |  |-  ( ( ph /\ ( A .x. X ) e. U ) -> ( A =/= .0. -> X e. U ) ) | 
						
							| 39 | 38 | necon1bd |  |-  ( ( ph /\ ( A .x. X ) e. U ) -> ( -. X e. U -> A = .0. ) ) | 
						
							| 40 | 39 | orrd |  |-  ( ( ph /\ ( A .x. X ) e. U ) -> ( X e. U \/ A = .0. ) ) | 
						
							| 41 | 40 | orcomd |  |-  ( ( ph /\ ( A .x. X ) e. U ) -> ( A = .0. \/ X e. U ) ) | 
						
							| 42 |  | oveq1 |  |-  ( A = .0. -> ( A .x. X ) = ( .0. .x. X ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ A = .0. ) -> ( A .x. X ) = ( .0. .x. X ) ) | 
						
							| 44 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 45 | 1 3 2 5 44 | lmod0vs |  |-  ( ( W e. LMod /\ X e. V ) -> ( .0. .x. X ) = ( 0g ` W ) ) | 
						
							| 46 | 23 9 45 | syl2anc |  |-  ( ph -> ( .0. .x. X ) = ( 0g ` W ) ) | 
						
							| 47 | 44 6 | lss0cl |  |-  ( ( W e. LMod /\ U e. S ) -> ( 0g ` W ) e. U ) | 
						
							| 48 | 23 8 47 | syl2anc |  |-  ( ph -> ( 0g ` W ) e. U ) | 
						
							| 49 | 46 48 | eqeltrd |  |-  ( ph -> ( .0. .x. X ) e. U ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ A = .0. ) -> ( .0. .x. X ) e. U ) | 
						
							| 51 | 43 50 | eqeltrd |  |-  ( ( ph /\ A = .0. ) -> ( A .x. X ) e. U ) | 
						
							| 52 | 23 | adantr |  |-  ( ( ph /\ X e. U ) -> W e. LMod ) | 
						
							| 53 | 8 | adantr |  |-  ( ( ph /\ X e. U ) -> U e. S ) | 
						
							| 54 | 10 | adantr |  |-  ( ( ph /\ X e. U ) -> A e. K ) | 
						
							| 55 |  | simpr |  |-  ( ( ph /\ X e. U ) -> X e. U ) | 
						
							| 56 | 3 2 4 6 | lssvscl |  |-  ( ( ( W e. LMod /\ U e. S ) /\ ( A e. K /\ X e. U ) ) -> ( A .x. X ) e. U ) | 
						
							| 57 | 52 53 54 55 56 | syl22anc |  |-  ( ( ph /\ X e. U ) -> ( A .x. X ) e. U ) | 
						
							| 58 | 51 57 | jaodan |  |-  ( ( ph /\ ( A = .0. \/ X e. U ) ) -> ( A .x. X ) e. U ) | 
						
							| 59 | 41 58 | impbida |  |-  ( ph -> ( ( A .x. X ) e. U <-> ( A = .0. \/ X e. U ) ) ) |