| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsw |
|- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 2 |
1
|
adantr |
|- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 3 |
|
fvoveq1 |
|- ( ( # ` W ) = 0 -> ( W ` ( ( # ` W ) - 1 ) ) = ( W ` ( 0 - 1 ) ) ) |
| 4 |
|
wrddm |
|- ( W e. Word V -> dom W = ( 0 ..^ ( # ` W ) ) ) |
| 5 |
|
1nn |
|- 1 e. NN |
| 6 |
|
nnnle0 |
|- ( 1 e. NN -> -. 1 <_ 0 ) |
| 7 |
5 6
|
ax-mp |
|- -. 1 <_ 0 |
| 8 |
|
0re |
|- 0 e. RR |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
8 9
|
subge0i |
|- ( 0 <_ ( 0 - 1 ) <-> 1 <_ 0 ) |
| 11 |
7 10
|
mtbir |
|- -. 0 <_ ( 0 - 1 ) |
| 12 |
|
elfzole1 |
|- ( ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) -> 0 <_ ( 0 - 1 ) ) |
| 13 |
11 12
|
mto |
|- -. ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) |
| 14 |
|
eleq2 |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> ( ( 0 - 1 ) e. dom W <-> ( 0 - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 15 |
13 14
|
mtbiri |
|- ( dom W = ( 0 ..^ ( # ` W ) ) -> -. ( 0 - 1 ) e. dom W ) |
| 16 |
|
ndmfv |
|- ( -. ( 0 - 1 ) e. dom W -> ( W ` ( 0 - 1 ) ) = (/) ) |
| 17 |
4 15 16
|
3syl |
|- ( W e. Word V -> ( W ` ( 0 - 1 ) ) = (/) ) |
| 18 |
3 17
|
sylan9eqr |
|- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( W ` ( ( # ` W ) - 1 ) ) = (/) ) |
| 19 |
2 18
|
eqtrd |
|- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( lastS ` W ) = (/) ) |