| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatlen |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) | 
						
							| 4 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 5 | 4 | nn0zd |  |-  ( A e. Word V -> ( # ` A ) e. ZZ ) | 
						
							| 6 |  | lennncl |  |-  ( ( B e. Word V /\ B =/= (/) ) -> ( # ` B ) e. NN ) | 
						
							| 7 |  | simpl |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) e. ZZ ) | 
						
							| 8 |  | nnz |  |-  ( ( # ` B ) e. NN -> ( # ` B ) e. ZZ ) | 
						
							| 9 |  | zaddcl |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) | 
						
							| 11 |  | zre |  |-  ( ( # ` A ) e. ZZ -> ( # ` A ) e. RR ) | 
						
							| 12 |  | nnrp |  |-  ( ( # ` B ) e. NN -> ( # ` B ) e. RR+ ) | 
						
							| 13 |  | ltaddrp |  |-  ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR+ ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 15 | 7 10 14 | 3jca |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 16 | 5 6 15 | syl2an |  |-  ( ( A e. Word V /\ ( B e. Word V /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 17 | 16 | 3impb |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 18 |  | fzolb |  |-  ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 20 |  | fzoend |  |-  ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 22 | 3 21 | eqeltrd |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` ( A ++ B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 23 |  | ccatval2 |  |-  ( ( A e. Word V /\ B e. Word V /\ ( ( # ` ( A ++ B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) ) | 
						
							| 24 | 22 23 | syld3an3 |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) ) | 
						
							| 25 | 2 | oveq1d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) ) | 
						
							| 26 | 4 | nn0cnd |  |-  ( A e. Word V -> ( # ` A ) e. CC ) | 
						
							| 27 |  | lencl |  |-  ( B e. Word V -> ( # ` B ) e. NN0 ) | 
						
							| 28 | 27 | nn0cnd |  |-  ( B e. Word V -> ( # ` B ) e. CC ) | 
						
							| 29 |  | addcl |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( # ` A ) + ( # ` B ) ) e. CC ) | 
						
							| 30 |  | 1cnd |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> 1 e. CC ) | 
						
							| 31 |  | simpl |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( # ` A ) e. CC ) | 
						
							| 32 | 29 30 31 | sub32d |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) - 1 ) ) | 
						
							| 33 |  | pncan2 |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) = ( # ` B ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) - 1 ) = ( ( # ` B ) - 1 ) ) | 
						
							| 35 | 32 34 | eqtrd |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 36 | 26 28 35 | syl2an |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 37 | 25 36 | eqtrd |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 38 | 37 | 3adant3 |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 40 | 24 39 | eqtrd |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 41 |  | ovex |  |-  ( A ++ B ) e. _V | 
						
							| 42 |  | lsw |  |-  ( ( A ++ B ) e. _V -> ( lastS ` ( A ++ B ) ) = ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) ) | 
						
							| 43 | 41 42 | mp1i |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` ( A ++ B ) ) = ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) ) | 
						
							| 44 |  | lsw |  |-  ( B e. Word V -> ( lastS ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 45 | 44 | 3ad2ant2 |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 46 | 40 43 45 | 3eqtr4d |  |-  ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` ( A ++ B ) ) = ( lastS ` B ) ) |