| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdsymb1 |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) | 
						
							| 2 |  | lswccats1 |  |-  ( ( P e. Word V /\ ( P ` 0 ) e. V ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) | 
						
							| 3 | 1 2 | syldan |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) | 
						
							| 4 |  | simpl |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) | 
						
							| 5 | 1 | s1cld |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) | 
						
							| 6 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 7 |  | elnnnn0c |  |-  ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) | 
						
							| 8 | 7 | biimpri |  |-  ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) | 
						
							| 9 | 6 8 | sylan |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) | 
						
							| 10 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` P ) ) <-> ( # ` P ) e. NN ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) | 
						
							| 12 |  | ccatval1 |  |-  ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) | 
						
							| 13 | 4 5 11 12 | syl3anc |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) | 
						
							| 14 | 3 13 | eqtr4d |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |