Step |
Hyp |
Ref |
Expression |
1 |
|
wrdsymb1 |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) |
2 |
|
lswccats1 |
|- ( ( P e. Word V /\ ( P ` 0 ) e. V ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
3 |
1 2
|
syldan |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
4 |
|
simpl |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) |
5 |
1
|
s1cld |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) |
6 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
7 |
|
elnnnn0c |
|- ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) |
8 |
7
|
biimpri |
|- ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
9 |
6 8
|
sylan |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
10 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` P ) ) <-> ( # ` P ) e. NN ) |
11 |
9 10
|
sylibr |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
12 |
|
ccatval1 |
|- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
13 |
4 5 11 12
|
syl3anc |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
14 |
3 13
|
eqtr4d |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |