Step |
Hyp |
Ref |
Expression |
1 |
|
lsw |
|- ( W e. Word V -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
2 |
1
|
adantr |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
3 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
4 |
|
fzo0end |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
5 |
3 4
|
syl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
6 |
|
wrdsymbcl |
|- ( ( W e. Word V /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( # ` W ) - 1 ) ) e. V ) |
7 |
5 6
|
syldan |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( W ` ( ( # ` W ) - 1 ) ) e. V ) |
8 |
2 7
|
eqeltrd |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( lastS ` W ) e. V ) |