Metamath Proof Explorer


Theorem lt2addd

Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
ltadd1d.3
|- ( ph -> C e. RR )
lt2addd.4
|- ( ph -> D e. RR )
lt2addd.5
|- ( ph -> A < C )
lt2addd.6
|- ( ph -> B < D )
Assertion lt2addd
|- ( ph -> ( A + B ) < ( C + D ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 ltadd1d.3
 |-  ( ph -> C e. RR )
4 lt2addd.4
 |-  ( ph -> D e. RR )
5 lt2addd.5
 |-  ( ph -> A < C )
6 lt2addd.6
 |-  ( ph -> B < D )
7 2 4 6 ltled
 |-  ( ph -> B <_ D )
8 1 2 3 4 5 7 ltleaddd
 |-  ( ph -> ( A + B ) < ( C + D ) )