Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by NM, 14-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt2.1 | |- A e. RR | |
| lt2.2 | |- B e. RR | ||
| lt2.3 | |- C e. RR | ||
| lt.4 | |- D e. RR | ||
| Assertion | lt2addi | |- ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt2.1 | |- A e. RR | |
| 2 | lt2.2 | |- B e. RR | |
| 3 | lt2.3 | |- C e. RR | |
| 4 | lt.4 | |- D e. RR | |
| 5 | lt2add | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) ) ) | |
| 6 | 1 2 3 4 5 | mp4an | |- ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) ) |