Metamath Proof Explorer


Theorem lt2addi

Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
lt2.3
|- C e. RR
lt.4
|- D e. RR
Assertion lt2addi
|- ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 lt2.3
 |-  C e. RR
4 lt.4
 |-  D e. RR
5 lt2add
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) ) )
6 1 2 3 4 5 mp4an
 |-  ( ( A < C /\ B < D ) -> ( A + B ) < ( C + D ) )