Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt2addmuld.a | |- ( ph -> A e. RR ) |
|
lt2addmuld.b | |- ( ph -> B e. RR ) |
||
lt2addmuld.c | |- ( ph -> C e. RR ) |
||
lt2addmuld.altc | |- ( ph -> A < C ) |
||
lt2addmuld.bltc | |- ( ph -> B < C ) |
||
Assertion | lt2addmuld | |- ( ph -> ( A + B ) < ( 2 x. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2addmuld.a | |- ( ph -> A e. RR ) |
|
2 | lt2addmuld.b | |- ( ph -> B e. RR ) |
|
3 | lt2addmuld.c | |- ( ph -> C e. RR ) |
|
4 | lt2addmuld.altc | |- ( ph -> A < C ) |
|
5 | lt2addmuld.bltc | |- ( ph -> B < C ) |
|
6 | 1 2 3 3 4 5 | lt2addd | |- ( ph -> ( A + B ) < ( C + C ) ) |
7 | 3 | recnd | |- ( ph -> C e. CC ) |
8 | 7 | 2timesd | |- ( ph -> ( 2 x. C ) = ( C + C ) ) |
9 | 6 8 | breqtrrd | |- ( ph -> ( A + B ) < ( 2 x. C ) ) |