Metamath Proof Explorer


Theorem lt2addmuld

Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt2addmuld.a
|- ( ph -> A e. RR )
lt2addmuld.b
|- ( ph -> B e. RR )
lt2addmuld.c
|- ( ph -> C e. RR )
lt2addmuld.altc
|- ( ph -> A < C )
lt2addmuld.bltc
|- ( ph -> B < C )
Assertion lt2addmuld
|- ( ph -> ( A + B ) < ( 2 x. C ) )

Proof

Step Hyp Ref Expression
1 lt2addmuld.a
 |-  ( ph -> A e. RR )
2 lt2addmuld.b
 |-  ( ph -> B e. RR )
3 lt2addmuld.c
 |-  ( ph -> C e. RR )
4 lt2addmuld.altc
 |-  ( ph -> A < C )
5 lt2addmuld.bltc
 |-  ( ph -> B < C )
6 1 2 3 3 4 5 lt2addd
 |-  ( ph -> ( A + B ) < ( C + C ) )
7 3 recnd
 |-  ( ph -> C e. CC )
8 7 2timesd
 |-  ( ph -> ( 2 x. C ) = ( C + C ) )
9 6 8 breqtrrd
 |-  ( ph -> ( A + B ) < ( 2 x. C ) )