| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpa |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 2 |  | rehalfcl |  |-  ( C e. RR -> ( C / 2 ) e. RR ) | 
						
							| 3 | 2 2 | jca |  |-  ( C e. RR -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) | 
						
							| 5 |  | lt2add |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) | 
						
							| 6 | 1 4 5 | syl2anc |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) | 
						
							| 7 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 8 |  | 2halves |  |-  ( C e. CC -> ( ( C / 2 ) + ( C / 2 ) ) = C ) | 
						
							| 9 | 7 8 | syl |  |-  ( C e. RR -> ( ( C / 2 ) + ( C / 2 ) ) = C ) | 
						
							| 10 | 9 | breq2d |  |-  ( C e. RR -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) | 
						
							| 12 | 6 11 | sylibd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |