Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rehalfcld.1 | |- ( ph -> A e. RR ) |
|
| lt2halvesd.2 | |- ( ph -> B e. RR ) |
||
| lt2halvesd.3 | |- ( ph -> C e. RR ) |
||
| lt2halvesd.4 | |- ( ph -> A < ( C / 2 ) ) |
||
| lt2halvesd.5 | |- ( ph -> B < ( C / 2 ) ) |
||
| Assertion | lt2halvesd | |- ( ph -> ( A + B ) < C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | lt2halvesd.2 | |- ( ph -> B e. RR ) |
|
| 3 | lt2halvesd.3 | |- ( ph -> C e. RR ) |
|
| 4 | lt2halvesd.4 | |- ( ph -> A < ( C / 2 ) ) |
|
| 5 | lt2halvesd.5 | |- ( ph -> B < ( C / 2 ) ) |
|
| 6 | lt2halves | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |
|
| 7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |
| 8 | 4 5 7 | mp2and | |- ( ph -> ( A + B ) < C ) |