Step |
Hyp |
Ref |
Expression |
1 |
|
lt2msq1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) < ( B x. B ) ) |
2 |
1
|
3expia |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR ) -> ( A < B -> ( A x. A ) < ( B x. B ) ) ) |
3 |
2
|
adantrr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B -> ( A x. A ) < ( B x. B ) ) ) |
4 |
|
id |
|- ( A = B -> A = B ) |
5 |
4 4
|
oveq12d |
|- ( A = B -> ( A x. A ) = ( B x. B ) ) |
6 |
5
|
a1i |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A = B -> ( A x. A ) = ( B x. B ) ) ) |
7 |
|
lt2msq1 |
|- ( ( ( B e. RR /\ 0 <_ B ) /\ A e. RR /\ B < A ) -> ( B x. B ) < ( A x. A ) ) |
8 |
7
|
3expia |
|- ( ( ( B e. RR /\ 0 <_ B ) /\ A e. RR ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
9 |
8
|
adantrr |
|- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
10 |
9
|
ancoms |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
11 |
6 10
|
orim12d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A = B \/ B < A ) -> ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) ) ) |
12 |
11
|
con3d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( -. ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) -> -. ( A = B \/ B < A ) ) ) |
13 |
|
simpll |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
14 |
13 13
|
remulcld |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. A ) e. RR ) |
15 |
|
simprl |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
16 |
15 15
|
remulcld |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B x. B ) e. RR ) |
17 |
14 16
|
lttrid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) < ( B x. B ) <-> -. ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) ) ) |
18 |
13 15
|
lttrid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
19 |
12 17 18
|
3imtr4d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) < ( B x. B ) -> A < B ) ) |
20 |
3 19
|
impbid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) |