Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A e. RR ) |
2 |
1 1
|
remulcld |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) e. RR ) |
3 |
|
simp2 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> B e. RR ) |
4 |
3 1
|
remulcld |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. A ) e. RR ) |
5 |
3 3
|
remulcld |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. B ) e. RR ) |
6 |
|
simp1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A e. RR /\ 0 <_ A ) ) |
7 |
|
simp3 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A < B ) |
8 |
1 3 7
|
ltled |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> A <_ B ) |
9 |
|
lemul1a |
|- ( ( ( A e. RR /\ B e. RR /\ ( A e. RR /\ 0 <_ A ) ) /\ A <_ B ) -> ( A x. A ) <_ ( B x. A ) ) |
10 |
1 3 6 8 9
|
syl31anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) <_ ( B x. A ) ) |
11 |
|
0red |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 e. RR ) |
12 |
|
simp1r |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 <_ A ) |
13 |
11 1 3 12 7
|
lelttrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> 0 < B ) |
14 |
|
ltmul2 |
|- ( ( A e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( B x. A ) < ( B x. B ) ) ) |
15 |
1 3 3 13 14
|
syl112anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A < B <-> ( B x. A ) < ( B x. B ) ) ) |
16 |
7 15
|
mpbid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( B x. A ) < ( B x. B ) ) |
17 |
2 4 5 10 16
|
lelttrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) < ( B x. B ) ) |