| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 2 |
|
recn |
|- ( D e. RR -> D e. CC ) |
| 3 |
|
mulcom |
|- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) = ( D x. C ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( C e. RR /\ D e. RR ) -> ( C x. D ) = ( D x. C ) ) |
| 5 |
4
|
oveq1d |
|- ( ( C e. RR /\ D e. RR ) -> ( ( C x. D ) / B ) = ( ( D x. C ) / B ) ) |
| 6 |
5
|
adantl |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C x. D ) / B ) = ( ( D x. C ) / B ) ) |
| 7 |
2
|
ad2antll |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
| 8 |
1
|
ad2antrl |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 9 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 10 |
9
|
adantr |
|- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 11 |
|
gt0ne0 |
|- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
| 12 |
10 11
|
jca |
|- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 13 |
12
|
adantr |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( B e. CC /\ B =/= 0 ) ) |
| 14 |
|
divass |
|- ( ( D e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( D x. C ) / B ) = ( D x. ( C / B ) ) ) |
| 15 |
7 8 13 14
|
syl3anc |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D x. C ) / B ) = ( D x. ( C / B ) ) ) |
| 16 |
6 15
|
eqtrd |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 17 |
16
|
adantrrr |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 18 |
17
|
adantll |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( C x. D ) / B ) = ( D x. ( C / B ) ) ) |
| 19 |
18
|
breq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( A < ( ( C x. D ) / B ) <-> A < ( D x. ( C / B ) ) ) ) |
| 20 |
|
simpll |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> A e. RR ) |
| 21 |
|
remulcl |
|- ( ( C e. RR /\ D e. RR ) -> ( C x. D ) e. RR ) |
| 22 |
21
|
adantrr |
|- ( ( C e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( C x. D ) e. RR ) |
| 23 |
22
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( C x. D ) e. RR ) |
| 24 |
|
simplr |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( B e. RR /\ 0 < B ) ) |
| 25 |
|
ltmuldiv |
|- ( ( A e. RR /\ ( C x. D ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < ( C x. D ) <-> A < ( ( C x. D ) / B ) ) ) |
| 26 |
20 23 24 25
|
syl3anc |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> A < ( ( C x. D ) / B ) ) ) |
| 27 |
|
simpl |
|- ( ( B e. RR /\ 0 < B ) -> B e. RR ) |
| 28 |
27 11
|
jca |
|- ( ( B e. RR /\ 0 < B ) -> ( B e. RR /\ B =/= 0 ) ) |
| 29 |
|
redivcl |
|- ( ( C e. RR /\ B e. RR /\ B =/= 0 ) -> ( C / B ) e. RR ) |
| 30 |
29
|
3expb |
|- ( ( C e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( C / B ) e. RR ) |
| 31 |
28 30
|
sylan2 |
|- ( ( C e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) e. RR ) |
| 32 |
31
|
ancoms |
|- ( ( ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( C / B ) e. RR ) |
| 33 |
32
|
ad2ant2lr |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( C / B ) e. RR ) |
| 34 |
|
simprr |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( D e. RR /\ 0 < D ) ) |
| 35 |
|
ltdivmul |
|- ( ( A e. RR /\ ( C / B ) e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( ( A / D ) < ( C / B ) <-> A < ( D x. ( C / B ) ) ) ) |
| 36 |
20 33 34 35
|
syl3anc |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / D ) < ( C / B ) <-> A < ( D x. ( C / B ) ) ) ) |
| 37 |
19 26 36
|
3bitr4d |
|- ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) ) |