Metamath Proof Explorer


Theorem lt2mul2divd

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses lt2mul2divd.1
|- ( ph -> A e. RR )
lt2mul2divd.2
|- ( ph -> B e. RR+ )
lt2mul2divd.3
|- ( ph -> C e. RR )
lt2mul2divd.4
|- ( ph -> D e. RR+ )
Assertion lt2mul2divd
|- ( ph -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) )

Proof

Step Hyp Ref Expression
1 lt2mul2divd.1
 |-  ( ph -> A e. RR )
2 lt2mul2divd.2
 |-  ( ph -> B e. RR+ )
3 lt2mul2divd.3
 |-  ( ph -> C e. RR )
4 lt2mul2divd.4
 |-  ( ph -> D e. RR+ )
5 2 rpregt0d
 |-  ( ph -> ( B e. RR /\ 0 < B ) )
6 4 rpregt0d
 |-  ( ph -> ( D e. RR /\ 0 < D ) )
7 lt2mul2div
 |-  ( ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) /\ ( C e. RR /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) )
8 1 5 3 6 7 syl22anc
 |-  ( ph -> ( ( A x. B ) < ( C x. D ) <-> ( A / D ) < ( C / B ) ) )