Step |
Hyp |
Ref |
Expression |
1 |
|
lt2msq |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) |
2 |
|
recn |
|- ( A e. RR -> A e. CC ) |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
5 |
|
sqval |
|- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
6 |
4 5
|
breqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) |
7 |
2 3 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) |
8 |
7
|
ad2ant2r |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) |
9 |
1 8
|
bitr4d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A ^ 2 ) < ( B ^ 2 ) ) ) |