| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt2msq |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | sqval |  |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 5 |  | sqval |  |-  ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 6 | 4 5 | breqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) | 
						
							| 7 | 2 3 6 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) | 
						
							| 8 | 7 | ad2ant2r |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) ) | 
						
							| 9 | 1 8 | bitr4d |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A ^ 2 ) < ( B ^ 2 ) ) ) |