Description: The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 12-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcl.1 | |- A e. RR |
|
lt2sq.2 | |- B e. RR |
||
Assertion | lt2sqi | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( A ^ 2 ) < ( B ^ 2 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl.1 | |- A e. RR |
|
2 | lt2sq.2 | |- B e. RR |
|
3 | 1 2 | lt2msqi | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) |
4 | 1 | recni | |- A e. CC |
5 | 4 | sqvali | |- ( A ^ 2 ) = ( A x. A ) |
6 | 2 | recni | |- B e. CC |
7 | 6 | sqvali | |- ( B ^ 2 ) = ( B x. B ) |
8 | 5 7 | breq12i | |- ( ( A ^ 2 ) < ( B ^ 2 ) <-> ( A x. A ) < ( B x. B ) ) |
9 | 3 8 | bitr4di | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( A ^ 2 ) < ( B ^ 2 ) ) ) |