Step |
Hyp |
Ref |
Expression |
1 |
|
lt4addmuld.a |
|- ( ph -> A e. RR ) |
2 |
|
lt4addmuld.b |
|- ( ph -> B e. RR ) |
3 |
|
lt4addmuld.c |
|- ( ph -> C e. RR ) |
4 |
|
lt4addmuld.d |
|- ( ph -> D e. RR ) |
5 |
|
lt4addmuld.e |
|- ( ph -> E e. RR ) |
6 |
|
lt4addmuld.alte |
|- ( ph -> A < E ) |
7 |
|
lt4addmuld.blte |
|- ( ph -> B < E ) |
8 |
|
lt4addmuld.clte |
|- ( ph -> C < E ) |
9 |
|
lt4addmuld.dlte |
|- ( ph -> D < E ) |
10 |
1 2
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
11 |
10 3
|
readdcld |
|- ( ph -> ( ( A + B ) + C ) e. RR ) |
12 |
|
3re |
|- 3 e. RR |
13 |
12
|
a1i |
|- ( ph -> 3 e. RR ) |
14 |
13 5
|
remulcld |
|- ( ph -> ( 3 x. E ) e. RR ) |
15 |
1 2 3 5 6 7 8
|
lt3addmuld |
|- ( ph -> ( ( A + B ) + C ) < ( 3 x. E ) ) |
16 |
11 4 14 5 15 9
|
lt2addd |
|- ( ph -> ( ( ( A + B ) + C ) + D ) < ( ( 3 x. E ) + E ) ) |
17 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
18 |
17
|
a1i |
|- ( ph -> 4 = ( 3 + 1 ) ) |
19 |
18
|
oveq1d |
|- ( ph -> ( 4 x. E ) = ( ( 3 + 1 ) x. E ) ) |
20 |
13
|
recnd |
|- ( ph -> 3 e. CC ) |
21 |
5
|
recnd |
|- ( ph -> E e. CC ) |
22 |
20 21
|
adddirp1d |
|- ( ph -> ( ( 3 + 1 ) x. E ) = ( ( 3 x. E ) + E ) ) |
23 |
19 22
|
eqtr2d |
|- ( ph -> ( ( 3 x. E ) + E ) = ( 4 x. E ) ) |
24 |
16 23
|
breqtrd |
|- ( ph -> ( ( ( A + B ) + C ) + D ) < ( 4 x. E ) ) |