| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltadd12dd.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							ltadd12dd.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							ltadd12dd.c | 
							 |-  ( ph -> C e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							ltadd12dd.d | 
							 |-  ( ph -> D e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							ltadd12dd.ac | 
							 |-  ( ph -> A < C )  | 
						
						
							| 6 | 
							
								
							 | 
							ltadd12dd.bd | 
							 |-  ( ph -> B < D )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							readdcld | 
							 |-  ( ph -> ( A + B ) e. RR )  | 
						
						
							| 8 | 
							
								3 2
							 | 
							readdcld | 
							 |-  ( ph -> ( C + B ) e. RR )  | 
						
						
							| 9 | 
							
								3 4
							 | 
							readdcld | 
							 |-  ( ph -> ( C + D ) e. RR )  | 
						
						
							| 10 | 
							
								1 3 2 5
							 | 
							ltadd1dd | 
							 |-  ( ph -> ( A + B ) < ( C + B ) )  | 
						
						
							| 11 | 
							
								2 4 3 6
							 | 
							ltadd2dd | 
							 |-  ( ph -> ( C + B ) < ( C + D ) )  | 
						
						
							| 12 | 
							
								7 8 9 10 11
							 | 
							lttrd | 
							 |-  ( ph -> ( A + B ) < ( C + D ) )  |