Metamath Proof Explorer


Theorem ltadd1i

Description: Addition to both sides of 'less than'. Theorem I.18 of Apostol p. 20. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
lt2.3
|- C e. RR
Assertion ltadd1i
|- ( A < B <-> ( A + C ) < ( B + C ) )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 lt2.3
 |-  C e. RR
4 ltadd1
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A + C ) < ( B + C ) ) )
5 1 2 3 4 mp3an
 |-  ( A < B <-> ( A + C ) < ( B + C ) )