| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axltadd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( C + A ) < ( C + B ) ) ) |
| 2 |
|
oveq2 |
|- ( A = B -> ( C + A ) = ( C + B ) ) |
| 3 |
2
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A = B -> ( C + A ) = ( C + B ) ) ) |
| 4 |
|
axltadd |
|- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B < A -> ( C + B ) < ( C + A ) ) ) |
| 5 |
4
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < A -> ( C + B ) < ( C + A ) ) ) |
| 6 |
3 5
|
orim12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A = B \/ B < A ) -> ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
| 7 |
6
|
con3d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) -> -. ( A = B \/ B < A ) ) ) |
| 8 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 9 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 10 |
8 9
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
| 11 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 12 |
8 11
|
readdcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
| 13 |
|
axlttri |
|- ( ( ( C + A ) e. RR /\ ( C + B ) e. RR ) -> ( ( C + A ) < ( C + B ) <-> -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
| 14 |
10 12 13
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
| 15 |
|
axlttri |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 16 |
9 11 15
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 17 |
7 14 16
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) -> A < B ) ) |
| 18 |
1 17
|
impbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |