Metamath Proof Explorer


Theorem ltaddnegr

Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021)

Ref Expression
Assertion ltaddnegr
|- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( A + B ) < B ) )

Proof

Step Hyp Ref Expression
1 ltaddneg
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < B ) )
2 recn
 |-  ( B e. RR -> B e. CC )
3 recn
 |-  ( A e. RR -> A e. CC )
4 addcom
 |-  ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) )
5 2 3 4 syl2anr
 |-  ( ( A e. RR /\ B e. RR ) -> ( B + A ) = ( A + B ) )
6 5 breq1d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) < B <-> ( A + B ) < B ) )
7 1 6 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( A + B ) < B ) )