Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ltaddnegr | |- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( A + B ) < B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltaddneg | |- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( B + A ) < B ) ) |
|
2 | recn | |- ( B e. RR -> B e. CC ) |
|
3 | recn | |- ( A e. RR -> A e. CC ) |
|
4 | addcom | |- ( ( B e. CC /\ A e. CC ) -> ( B + A ) = ( A + B ) ) |
|
5 | 2 3 4 | syl2anr | |- ( ( A e. RR /\ B e. RR ) -> ( B + A ) = ( A + B ) ) |
6 | 5 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( B + A ) < B <-> ( A + B ) < B ) ) |
7 | 1 6 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( A < 0 <-> ( A + B ) < B ) ) |