| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
ltadd2 |
|- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( 0 < A <-> ( B + 0 ) < ( B + A ) ) ) |
| 3 |
1 2
|
mp3an1 |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> ( B + 0 ) < ( B + A ) ) ) |
| 4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 5 |
4
|
addridd |
|- ( B e. RR -> ( B + 0 ) = B ) |
| 6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( B + 0 ) = B ) |
| 7 |
6
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B + 0 ) < ( B + A ) <-> B < ( B + A ) ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> B < ( B + A ) ) ) |