Step |
Hyp |
Ref |
Expression |
1 |
|
prn0 |
|- ( B e. P. -> B =/= (/) ) |
2 |
|
n0 |
|- ( B =/= (/) <-> E. y y e. B ) |
3 |
1 2
|
sylib |
|- ( B e. P. -> E. y y e. B ) |
4 |
3
|
adantl |
|- ( ( A e. P. /\ B e. P. ) -> E. y y e. B ) |
5 |
|
addclpr |
|- ( ( A e. P. /\ B e. P. ) -> ( A +P. B ) e. P. ) |
6 |
|
df-plp |
|- +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) |
7 |
|
addclnq |
|- ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) |
8 |
6 7
|
genpprecl |
|- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ y e. B ) -> ( x +Q y ) e. ( A +P. B ) ) ) |
9 |
8
|
imp |
|- ( ( ( A e. P. /\ B e. P. ) /\ ( x e. A /\ y e. B ) ) -> ( x +Q y ) e. ( A +P. B ) ) |
10 |
|
elprnq |
|- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> ( x +Q y ) e. Q. ) |
11 |
|
addnqf |
|- +Q : ( Q. X. Q. ) --> Q. |
12 |
11
|
fdmi |
|- dom +Q = ( Q. X. Q. ) |
13 |
|
0nnq |
|- -. (/) e. Q. |
14 |
12 13
|
ndmovrcl |
|- ( ( x +Q y ) e. Q. -> ( x e. Q. /\ y e. Q. ) ) |
15 |
|
ltaddnq |
|- ( ( x e. Q. /\ y e. Q. ) -> x |
16 |
10 14 15
|
3syl |
|- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> x |
17 |
|
prcdnq |
|- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> ( x x e. ( A +P. B ) ) ) |
18 |
16 17
|
mpd |
|- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> x e. ( A +P. B ) ) |
19 |
5 9 18
|
syl2an2r |
|- ( ( ( A e. P. /\ B e. P. ) /\ ( x e. A /\ y e. B ) ) -> x e. ( A +P. B ) ) |
20 |
19
|
exp32 |
|- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( y e. B -> x e. ( A +P. B ) ) ) ) |
21 |
20
|
com23 |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( x e. A -> x e. ( A +P. B ) ) ) ) |
22 |
21
|
alrimdv |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A. x ( x e. A -> x e. ( A +P. B ) ) ) ) |
23 |
|
dfss2 |
|- ( A C_ ( A +P. B ) <-> A. x ( x e. A -> x e. ( A +P. B ) ) ) |
24 |
22 23
|
syl6ibr |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A C_ ( A +P. B ) ) ) |
25 |
|
vex |
|- y e. _V |
26 |
25
|
prlem934 |
|- ( A e. P. -> E. x e. A -. ( x +Q y ) e. A ) |
27 |
26
|
adantr |
|- ( ( A e. P. /\ B e. P. ) -> E. x e. A -. ( x +Q y ) e. A ) |
28 |
|
eleq2 |
|- ( A = ( A +P. B ) -> ( ( x +Q y ) e. A <-> ( x +Q y ) e. ( A +P. B ) ) ) |
29 |
28
|
biimprcd |
|- ( ( x +Q y ) e. ( A +P. B ) -> ( A = ( A +P. B ) -> ( x +Q y ) e. A ) ) |
30 |
29
|
con3d |
|- ( ( x +Q y ) e. ( A +P. B ) -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) |
31 |
8 30
|
syl6 |
|- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ y e. B ) -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) ) |
32 |
31
|
expd |
|- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( y e. B -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) ) ) |
33 |
32
|
com34 |
|- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( -. ( x +Q y ) e. A -> ( y e. B -> -. A = ( A +P. B ) ) ) ) ) |
34 |
33
|
rexlimdv |
|- ( ( A e. P. /\ B e. P. ) -> ( E. x e. A -. ( x +Q y ) e. A -> ( y e. B -> -. A = ( A +P. B ) ) ) ) |
35 |
27 34
|
mpd |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> -. A = ( A +P. B ) ) ) |
36 |
24 35
|
jcad |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( A C_ ( A +P. B ) /\ -. A = ( A +P. B ) ) ) ) |
37 |
|
dfpss2 |
|- ( A C. ( A +P. B ) <-> ( A C_ ( A +P. B ) /\ -. A = ( A +P. B ) ) ) |
38 |
36 37
|
syl6ibr |
|- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A C. ( A +P. B ) ) ) |
39 |
38
|
exlimdv |
|- ( ( A e. P. /\ B e. P. ) -> ( E. y y e. B -> A C. ( A +P. B ) ) ) |
40 |
4 39
|
mpd |
|- ( ( A e. P. /\ B e. P. ) -> A C. ( A +P. B ) ) |
41 |
|
ltprord |
|- ( ( A e. P. /\ ( A +P. B ) e. P. ) -> ( A A C. ( A +P. B ) ) ) |
42 |
5 41
|
syldan |
|- ( ( A e. P. /\ B e. P. ) -> ( A A C. ( A +P. B ) ) ) |
43 |
40 42
|
mpbird |
|- ( ( A e. P. /\ B e. P. ) -> A |