Metamath Proof Explorer


Theorem ltaddrp

Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltaddrp
|- ( ( A e. RR /\ B e. RR+ ) -> A < ( A + B ) )

Proof

Step Hyp Ref Expression
1 elrp
 |-  ( B e. RR+ <-> ( B e. RR /\ 0 < B ) )
2 ltaddpos
 |-  ( ( B e. RR /\ A e. RR ) -> ( 0 < B <-> A < ( A + B ) ) )
3 2 biimpd
 |-  ( ( B e. RR /\ A e. RR ) -> ( 0 < B -> A < ( A + B ) ) )
4 3 expcom
 |-  ( A e. RR -> ( B e. RR -> ( 0 < B -> A < ( A + B ) ) ) )
5 4 imp32
 |-  ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> A < ( A + B ) )
6 1 5 sylan2b
 |-  ( ( A e. RR /\ B e. RR+ ) -> A < ( A + B ) )