Metamath Proof Explorer


Theorem ltaddrp2d

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
rpgecld.2
|- ( ph -> B e. RR+ )
Assertion ltaddrp2d
|- ( ph -> A < ( B + A ) )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 rpgecld.2
 |-  ( ph -> B e. RR+ )
3 1 2 ltaddrpd
 |-  ( ph -> A < ( A + B ) )
4 1 recnd
 |-  ( ph -> A e. CC )
5 2 rpcnd
 |-  ( ph -> B e. CC )
6 4 5 addcomd
 |-  ( ph -> ( A + B ) = ( B + A ) )
7 3 6 breqtrd
 |-  ( ph -> A < ( B + A ) )