Metamath Proof Explorer


Theorem ltaddsub2

Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltaddsub2
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> B < ( C - A ) ) )

Proof

Step Hyp Ref Expression
1 recn
 |-  ( A e. RR -> A e. CC )
2 recn
 |-  ( B e. RR -> B e. CC )
3 addcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) )
4 1 2 3 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) )
5 4 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) = ( B + A ) )
6 5 breq1d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> ( B + A ) < C ) )
7 ltaddsub
 |-  ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( ( B + A ) < C <-> B < ( C - A ) ) )
8 7 3com12
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + A ) < C <-> B < ( C - A ) ) )
9 6 8 bitrd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> B < ( C - A ) ) )