Step |
Hyp |
Ref |
Expression |
1 |
|
ltadd2 |
|- ( ( B e. RR /\ C e. RR /\ A e. RR ) -> ( B < C <-> ( A + B ) < ( A + C ) ) ) |
2 |
1
|
3comr |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> ( A + B ) < ( A + C ) ) ) |
3 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + B ) e. RR ) |
5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
6 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
7 |
4 5 6
|
ltsubaddd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A + B ) - C ) < A <-> ( A + B ) < ( A + C ) ) ) |
8 |
2 7
|
bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> ( ( A + B ) - C ) < A ) ) |