| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmplp |
|- dom +P. = ( P. X. P. ) |
| 2 |
|
ltrelpr |
|- |
| 3 |
|
0npr |
|- -. (/) e. P. |
| 4 |
|
ltaprlem |
|- ( C e. P. -> ( A ( C +P. A ) |
| 5 |
4
|
adantr |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( A ( C +P. A ) |
| 6 |
|
olc |
|- ( ( C +P. A ) ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) |
| 7 |
|
ltaprlem |
|- ( C e. P. -> ( B ( C +P. B ) |
| 8 |
7
|
adantr |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( B ( C +P. B ) |
| 9 |
|
ltsopr |
|- |
| 10 |
|
sotric |
|- ( ( ( B -. ( B = A \/ A |
| 11 |
9 10
|
mpan |
|- ( ( B e. P. /\ A e. P. ) -> ( B -. ( B = A \/ A |
| 12 |
11
|
adantl |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( B -. ( B = A \/ A |
| 13 |
|
addclpr |
|- ( ( C e. P. /\ B e. P. ) -> ( C +P. B ) e. P. ) |
| 14 |
|
addclpr |
|- ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. ) |
| 15 |
13 14
|
anim12dan |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. B ) e. P. /\ ( C +P. A ) e. P. ) ) |
| 16 |
|
sotric |
|- ( ( ( ( C +P. B ) -. ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) |
| 17 |
9 15 16
|
sylancr |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. B ) -. ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) |
| 18 |
8 12 17
|
3imtr3d |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( -. ( B = A \/ A -. ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) |
| 19 |
18
|
con4d |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( ( C +P. B ) = ( C +P. A ) \/ ( C +P. A ) ( B = A \/ A |
| 20 |
6 19
|
syl5 |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) ( B = A \/ A |
| 21 |
|
df-or |
|- ( ( B = A \/ A ( -. B = A -> A |
| 22 |
20 21
|
imbitrdi |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) ( -. B = A -> A |
| 23 |
22
|
com23 |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( -. B = A -> ( ( C +P. A ) A |
| 24 |
9 2
|
soirri |
|- -. ( C +P. A ) |
| 25 |
|
oveq2 |
|- ( B = A -> ( C +P. B ) = ( C +P. A ) ) |
| 26 |
25
|
breq2d |
|- ( B = A -> ( ( C +P. A ) ( C +P. A ) |
| 27 |
24 26
|
mtbiri |
|- ( B = A -> -. ( C +P. A ) |
| 28 |
27
|
pm2.21d |
|- ( B = A -> ( ( C +P. A ) A |
| 29 |
23 28
|
pm2.61d2 |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( ( C +P. A ) A |
| 30 |
5 29
|
impbid |
|- ( ( C e. P. /\ ( B e. P. /\ A e. P. ) ) -> ( A ( C +P. A ) |
| 31 |
30
|
3impb |
|- ( ( C e. P. /\ B e. P. /\ A e. P. ) -> ( A ( C +P. A ) |
| 32 |
31
|
3com13 |
|- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A ( C +P. A ) |
| 33 |
1 2 3 32
|
ndmovord |
|- ( C e. P. -> ( A ( C +P. A ) |