| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltrelpr |  |-   | 
						
							| 2 | 1 | brel |  |-  ( A  ( A e. P. /\ B e. P. ) ) | 
						
							| 3 | 2 | simpld |  |-  ( A  A e. P. ) | 
						
							| 4 |  | ltexpri |  |-  ( A  E. x e. P. ( A +P. x ) = B ) | 
						
							| 5 |  | addclpr |  |-  ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. ) | 
						
							| 6 |  | ltaddpr |  |-  ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A )  | 
						
							| 7 |  | addasspr |  |-  ( ( C +P. A ) +P. x ) = ( C +P. ( A +P. x ) ) | 
						
							| 8 |  | oveq2 |  |-  ( ( A +P. x ) = B -> ( C +P. ( A +P. x ) ) = ( C +P. B ) ) | 
						
							| 9 | 7 8 | eqtrid |  |-  ( ( A +P. x ) = B -> ( ( C +P. A ) +P. x ) = ( C +P. B ) ) | 
						
							| 10 | 9 | breq2d |  |-  ( ( A +P. x ) = B -> ( ( C +P. A )  ( C +P. A )  | 
						
							| 11 | 6 10 | imbitrid |  |-  ( ( A +P. x ) = B -> ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A )  | 
						
							| 12 | 11 | expd |  |-  ( ( A +P. x ) = B -> ( ( C +P. A ) e. P. -> ( x e. P. -> ( C +P. A )  | 
						
							| 13 | 5 12 | syl5 |  |-  ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( x e. P. -> ( C +P. A )  | 
						
							| 14 | 13 | com3r |  |-  ( x e. P. -> ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A )  | 
						
							| 15 | 14 | rexlimiv |  |-  ( E. x e. P. ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A )  | 
						
							| 16 | 4 15 | syl |  |-  ( A  ( ( C e. P. /\ A e. P. ) -> ( C +P. A )  | 
						
							| 17 | 3 16 | sylan2i |  |-  ( A  ( ( C e. P. /\ A   ( C +P. A )  | 
						
							| 18 | 17 | expd |  |-  ( A  ( C e. P. -> ( A   ( C +P. A )  | 
						
							| 19 | 18 | pm2.43b |  |-  ( C e. P. -> ( A  ( C +P. A )  |