Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelpr |
|- |
2 |
1
|
brel |
|- ( A ( A e. P. /\ B e. P. ) ) |
3 |
2
|
simpld |
|- ( A A e. P. ) |
4 |
|
ltexpri |
|- ( A E. x e. P. ( A +P. x ) = B ) |
5 |
|
addclpr |
|- ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. ) |
6 |
|
ltaddpr |
|- ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) |
7 |
|
addasspr |
|- ( ( C +P. A ) +P. x ) = ( C +P. ( A +P. x ) ) |
8 |
|
oveq2 |
|- ( ( A +P. x ) = B -> ( C +P. ( A +P. x ) ) = ( C +P. B ) ) |
9 |
7 8
|
eqtrid |
|- ( ( A +P. x ) = B -> ( ( C +P. A ) +P. x ) = ( C +P. B ) ) |
10 |
9
|
breq2d |
|- ( ( A +P. x ) = B -> ( ( C +P. A ) ( C +P. A ) |
11 |
6 10
|
syl5ib |
|- ( ( A +P. x ) = B -> ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) |
12 |
11
|
expd |
|- ( ( A +P. x ) = B -> ( ( C +P. A ) e. P. -> ( x e. P. -> ( C +P. A ) |
13 |
5 12
|
syl5 |
|- ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( x e. P. -> ( C +P. A ) |
14 |
13
|
com3r |
|- ( x e. P. -> ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) |
15 |
14
|
rexlimiv |
|- ( E. x e. P. ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) |
16 |
4 15
|
syl |
|- ( A ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) |
17 |
3 16
|
sylan2i |
|- ( A ( ( C e. P. /\ A ( C +P. A ) |
18 |
17
|
expd |
|- ( A ( C e. P. -> ( A ( C +P. A ) |
19 |
18
|
pm2.43b |
|- ( C e. P. -> ( A ( C +P. A ) |