Metamath Proof Explorer


Theorem ltaprlem

Description: Lemma for Proposition 9-3.5(v) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion ltaprlem
|- ( C e. P. -> ( A 

( C +P. A )


Proof

Step Hyp Ref Expression
1 ltrelpr
 |-  

2 1 brel
 |-  ( A 

( A e. P. /\ B e. P. ) )

3 2 simpld
 |-  ( A 

A e. P. )

4 ltexpri
 |-  ( A 

E. x e. P. ( A +P. x ) = B )

5 addclpr
 |-  ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) e. P. )
6 ltaddpr
 |-  ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) 

7 addasspr
 |-  ( ( C +P. A ) +P. x ) = ( C +P. ( A +P. x ) )
8 oveq2
 |-  ( ( A +P. x ) = B -> ( C +P. ( A +P. x ) ) = ( C +P. B ) )
9 7 8 eqtrid
 |-  ( ( A +P. x ) = B -> ( ( C +P. A ) +P. x ) = ( C +P. B ) )
10 9 breq2d
 |-  ( ( A +P. x ) = B -> ( ( C +P. A ) 

( C +P. A )

11 6 10 syl5ib
 |-  ( ( A +P. x ) = B -> ( ( ( C +P. A ) e. P. /\ x e. P. ) -> ( C +P. A ) 

12 11 expd
 |-  ( ( A +P. x ) = B -> ( ( C +P. A ) e. P. -> ( x e. P. -> ( C +P. A ) 

13 5 12 syl5
 |-  ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( x e. P. -> ( C +P. A ) 

14 13 com3r
 |-  ( x e. P. -> ( ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) 

15 14 rexlimiv
 |-  ( E. x e. P. ( A +P. x ) = B -> ( ( C e. P. /\ A e. P. ) -> ( C +P. A ) 

16 4 15 syl
 |-  ( A 

( ( C e. P. /\ A e. P. ) -> ( C +P. A )

17 3 16 sylan2i
 |-  ( A 

( ( C e. P. /\ A

( C +P. A )

18 17 expd
 |-  ( A 

( C e. P. -> ( A

( C +P. A )

19 18 pm2.43b
 |-  ( C e. P. -> ( A 

( C +P. A )