Step |
Hyp |
Ref |
Expression |
1 |
|
ltbval.c |
|- C = ( T |
2 |
|
ltbval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
3 |
|
ltbval.i |
|- ( ph -> I e. V ) |
4 |
|
ltbval.t |
|- ( ph -> T e. W ) |
5 |
|
ltbwe.w |
|- ( ph -> T We I ) |
6 |
|
eqid |
|- { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } |
7 |
|
breq1 |
|- ( h = x -> ( h finSupp 0 <-> x finSupp 0 ) ) |
8 |
7
|
cbvrabv |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { x e. ( NN0 ^m I ) | x finSupp 0 } |
9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
10 |
|
ltweuz |
|- < We ( ZZ>= ` 0 ) |
11 |
|
weeq2 |
|- ( NN0 = ( ZZ>= ` 0 ) -> ( < We NN0 <-> < We ( ZZ>= ` 0 ) ) ) |
12 |
10 11
|
mpbiri |
|- ( NN0 = ( ZZ>= ` 0 ) -> < We NN0 ) |
13 |
9 12
|
mp1i |
|- ( ph -> < We NN0 ) |
14 |
|
0nn0 |
|- 0 e. NN0 |
15 |
|
ne0i |
|- ( 0 e. NN0 -> NN0 =/= (/) ) |
16 |
14 15
|
mp1i |
|- ( ph -> NN0 =/= (/) ) |
17 |
|
eqid |
|- OrdIso ( T , I ) = OrdIso ( T , I ) |
18 |
|
0z |
|- 0 e. ZZ |
19 |
|
hashgval2 |
|- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
20 |
18 19
|
om2uzoi |
|- ( # |` _om ) = OrdIso ( < , ( ZZ>= ` 0 ) ) |
21 |
|
oieq2 |
|- ( NN0 = ( ZZ>= ` 0 ) -> OrdIso ( < , NN0 ) = OrdIso ( < , ( ZZ>= ` 0 ) ) ) |
22 |
9 21
|
ax-mp |
|- OrdIso ( < , NN0 ) = OrdIso ( < , ( ZZ>= ` 0 ) ) |
23 |
20 22
|
eqtr4i |
|- ( # |` _om ) = OrdIso ( < , NN0 ) |
24 |
|
peano1 |
|- (/) e. _om |
25 |
|
fvres |
|- ( (/) e. _om -> ( ( # |` _om ) ` (/) ) = ( # ` (/) ) ) |
26 |
24 25
|
ax-mp |
|- ( ( # |` _om ) ` (/) ) = ( # ` (/) ) |
27 |
|
hash0 |
|- ( # ` (/) ) = 0 |
28 |
26 27
|
eqtr2i |
|- 0 = ( ( # |` _om ) ` (/) ) |
29 |
6 8 5 13 16 17 23 28
|
wemapwe |
|- ( ph -> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
30 |
|
elmapfun |
|- ( h e. ( NN0 ^m I ) -> Fun h ) |
31 |
30
|
adantl |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> Fun h ) |
32 |
|
simpr |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> h e. ( NN0 ^m I ) ) |
33 |
|
c0ex |
|- 0 e. _V |
34 |
33
|
a1i |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> 0 e. _V ) |
35 |
|
funisfsupp |
|- ( ( Fun h /\ h e. ( NN0 ^m I ) /\ 0 e. _V ) -> ( h finSupp 0 <-> ( h supp 0 ) e. Fin ) ) |
36 |
31 32 34 35
|
syl3anc |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( h finSupp 0 <-> ( h supp 0 ) e. Fin ) ) |
37 |
|
elmapi |
|- ( h e. ( NN0 ^m I ) -> h : I --> NN0 ) |
38 |
|
frnnn0supp |
|- ( ( I e. V /\ h : I --> NN0 ) -> ( h supp 0 ) = ( `' h " NN ) ) |
39 |
38
|
eleq1d |
|- ( ( I e. V /\ h : I --> NN0 ) -> ( ( h supp 0 ) e. Fin <-> ( `' h " NN ) e. Fin ) ) |
40 |
3 37 39
|
syl2an |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( ( h supp 0 ) e. Fin <-> ( `' h " NN ) e. Fin ) ) |
41 |
36 40
|
bitr2d |
|- ( ( ph /\ h e. ( NN0 ^m I ) ) -> ( ( `' h " NN ) e. Fin <-> h finSupp 0 ) ) |
42 |
41
|
rabbidva |
|- ( ph -> { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
43 |
2 42
|
eqtrid |
|- ( ph -> D = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
44 |
|
weeq2 |
|- ( D = { h e. ( NN0 ^m I ) | h finSupp 0 } -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We { h e. ( NN0 ^m I ) | h finSupp 0 } ) ) |
46 |
29 45
|
mpbird |
|- ( ph -> { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D ) |
47 |
|
weinxp |
|- ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) |
48 |
46 47
|
sylib |
|- ( ph -> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) |
49 |
1 2 3 4
|
ltbval |
|- ( ph -> C = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
50 |
|
df-xp |
|- ( D X. D ) = { <. x , y >. | ( x e. D /\ y e. D ) } |
51 |
|
vex |
|- x e. _V |
52 |
|
vex |
|- y e. _V |
53 |
51 52
|
prss |
|- ( ( x e. D /\ y e. D ) <-> { x , y } C_ D ) |
54 |
53
|
opabbii |
|- { <. x , y >. | ( x e. D /\ y e. D ) } = { <. x , y >. | { x , y } C_ D } |
55 |
50 54
|
eqtr2i |
|- { <. x , y >. | { x , y } C_ D } = ( D X. D ) |
56 |
55
|
ineq1i |
|- ( { <. x , y >. | { x , y } C_ D } i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = ( ( D X. D ) i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) |
57 |
|
inopab |
|- ( { <. x , y >. | { x , y } C_ D } i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } |
58 |
|
incom |
|- ( ( D X. D ) i^i { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } ) = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) |
59 |
56 57 58
|
3eqtr3i |
|- { <. x , y >. | ( { x , y } C_ D /\ E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) ) } = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) |
60 |
49 59
|
eqtrdi |
|- ( ph -> C = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) ) |
61 |
|
weeq1 |
|- ( C = ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) -> ( C We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) ) |
62 |
60 61
|
syl |
|- ( ph -> ( C We D <-> ( { <. x , y >. | E. z e. I ( ( x ` z ) < ( y ` z ) /\ A. w e. I ( z T w -> ( x ` w ) = ( y ` w ) ) ) } i^i ( D X. D ) ) We D ) ) |
63 |
48 62
|
mpbird |
|- ( ph -> C We D ) |