| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltltncvr.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | ltltncvr.s |  |-  .< = ( lt ` K ) | 
						
							| 3 |  | ltltncvr.c |  |-  C = (  | 
						
							| 4 | 1 2 3 | cvrlt |  |-  ( ( ( K e. A /\ Y e. B /\ Z e. B ) /\ Y C Z ) -> Y .< Z ) | 
						
							| 5 | 4 | ex |  |-  ( ( K e. A /\ Y e. B /\ Z e. B ) -> ( Y C Z -> Y .< Z ) ) | 
						
							| 6 | 5 | 3adant3r1 |  |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y C Z -> Y .< Z ) ) | 
						
							| 7 | 1 2 3 | ltltncvr |  |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> -. X C Z ) ) | 
						
							| 8 | 6 7 | sylan2d |  |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y C Z ) -> -. X C Z ) ) |