Step |
Hyp |
Ref |
Expression |
1 |
|
refldivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
2 |
|
peano2re |
|- ( ( |_ ` ( A / B ) ) e. RR -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
3 |
1 2
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
4 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
5 |
4
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR ) |
6 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
7 |
|
peano2re |
|- ( ( A / B ) e. RR -> ( ( A / B ) + 1 ) e. RR ) |
8 |
6 7
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) + 1 ) e. RR ) |
9 |
8
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR ) |
10 |
9
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) e. RR ) |
11 |
|
rerpdivcl |
|- ( ( C e. RR /\ B e. RR+ ) -> ( C / B ) e. RR ) |
12 |
11
|
ancoms |
|- ( ( B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR ) |
13 |
12
|
3adant1 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR ) |
14 |
13
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( C / B ) e. RR ) |
15 |
1
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( |_ ` ( A / B ) ) e. RR ) |
16 |
15
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) e. RR ) |
17 |
6
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. RR ) |
18 |
17
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A / B ) e. RR ) |
19 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> 1 e. RR ) |
20 |
|
3simpa |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A e. RR /\ B e. RR+ ) ) |
21 |
20
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A e. RR /\ B e. RR+ ) ) |
22 |
|
fldivle |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
23 |
21 22
|
syl |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) |
24 |
16 18 19 23
|
leadd1dd |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) <_ ( ( A / B ) + 1 ) ) |
25 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
26 |
|
ltaddsub |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |
27 |
25 26
|
syl3an2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |
28 |
27
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A + B ) < C ) |
29 |
|
recn |
|- ( ( A / B ) e. RR -> ( A / B ) e. CC ) |
30 |
6 29
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. CC ) |
31 |
30
|
3adant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. CC ) |
32 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
33 |
32
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. CC ) |
34 |
|
1cnd |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> 1 e. CC ) |
35 |
|
recn |
|- ( A e. RR -> A e. CC ) |
36 |
35
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> A e. CC ) |
37 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
38 |
37
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B =/= 0 ) |
39 |
36 33 38
|
divcan1d |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) x. B ) = A ) |
40 |
32
|
mulid2d |
|- ( B e. RR+ -> ( 1 x. B ) = B ) |
41 |
40
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( 1 x. B ) = B ) |
42 |
39 41
|
oveq12d |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) x. B ) + ( 1 x. B ) ) = ( A + B ) ) |
43 |
31 33 34 42
|
joinlmuladdmuld |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) x. B ) = ( A + B ) ) |
44 |
|
recn |
|- ( C e. RR -> C e. CC ) |
45 |
44
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> C e. CC ) |
46 |
45 33 38
|
divcan1d |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( C / B ) x. B ) = C ) |
47 |
43 46
|
breq12d |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) ) |
48 |
47
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) ) |
49 |
28 48
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) |
50 |
17 7
|
syl |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR ) |
51 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. RR+ ) |
52 |
50 13 51
|
ltmul1d |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) ) |
53 |
52
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) ) |
54 |
49 53
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) < ( C / B ) ) |
55 |
5 10 14 24 54
|
lelttrd |
|- ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) |
56 |
55
|
ex |
|- ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A < ( C - B ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) ) |