| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							refldivcl | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							peano2re | 
							 |-  ( ( |_ ` ( A / B ) ) e. RR -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR )  | 
						
						
							| 4 | 
							
								3
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							rerpdivcl | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR )  | 
						
						
							| 7 | 
							
								
							 | 
							peano2re | 
							 |-  ( ( A / B ) e. RR -> ( ( A / B ) + 1 ) e. RR )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) + 1 ) e. RR )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							rerpdivcl | 
							 |-  ( ( C e. RR /\ B e. RR+ ) -> ( C / B ) e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							ancoms | 
							 |-  ( ( B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant1 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( C / B ) e. RR )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( C / B ) e. RR )  | 
						
						
							| 15 | 
							
								1
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( |_ ` ( A / B ) ) e. RR )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) e. RR )  | 
						
						
							| 17 | 
							
								6
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. RR )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A / B ) e. RR )  | 
						
						
							| 19 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> 1 e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A e. RR /\ B e. RR+ ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A e. RR /\ B e. RR+ ) )  | 
						
						
							| 22 | 
							
								
							 | 
							fldivle | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) )  | 
						
						
							| 24 | 
							
								16 18 19 23
							 | 
							leadd1dd | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) <_ ( ( A / B ) + 1 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							rpre | 
							 |-  ( B e. RR+ -> B e. RR )  | 
						
						
							| 26 | 
							
								
							 | 
							ltaddsub | 
							 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl3an2 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							biimpar | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( A + B ) < C )  | 
						
						
							| 29 | 
							
								
							 | 
							recn | 
							 |-  ( ( A / B ) e. RR -> ( A / B ) e. CC )  | 
						
						
							| 30 | 
							
								6 29
							 | 
							syl | 
							 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. CC )  | 
						
						
							| 31 | 
							
								30
							 | 
							3adant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A / B ) e. CC )  | 
						
						
							| 32 | 
							
								
							 | 
							rpcn | 
							 |-  ( B e. RR+ -> B e. CC )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant2 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. CC )  | 
						
						
							| 34 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> 1 e. CC )  | 
						
						
							| 35 | 
							
								
							 | 
							recn | 
							 |-  ( A e. RR -> A e. CC )  | 
						
						
							| 36 | 
							
								35
							 | 
							3ad2ant1 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> A e. CC )  | 
						
						
							| 37 | 
							
								
							 | 
							rpne0 | 
							 |-  ( B e. RR+ -> B =/= 0 )  | 
						
						
							| 38 | 
							
								37
							 | 
							3ad2ant2 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B =/= 0 )  | 
						
						
							| 39 | 
							
								36 33 38
							 | 
							divcan1d | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) x. B ) = A )  | 
						
						
							| 40 | 
							
								32
							 | 
							mullidd | 
							 |-  ( B e. RR+ -> ( 1 x. B ) = B )  | 
						
						
							| 41 | 
							
								40
							 | 
							3ad2ant2 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( 1 x. B ) = B )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							oveq12d | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) x. B ) + ( 1 x. B ) ) = ( A + B ) )  | 
						
						
							| 43 | 
							
								31 33 34 42
							 | 
							joinlmuladdmuld | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) x. B ) = ( A + B ) )  | 
						
						
							| 44 | 
							
								
							 | 
							recn | 
							 |-  ( C e. RR -> C e. CC )  | 
						
						
							| 45 | 
							
								44
							 | 
							3ad2ant3 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> C e. CC )  | 
						
						
							| 46 | 
							
								45 33 38
							 | 
							divcan1d | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( C / B ) x. B ) = C )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							breq12d | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) <-> ( A + B ) < C ) )  | 
						
						
							| 49 | 
							
								28 48
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) )  | 
						
						
							| 50 | 
							
								17 7
							 | 
							syl | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( A / B ) + 1 ) e. RR )  | 
						
						
							| 51 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> B e. RR+ )  | 
						
						
							| 52 | 
							
								50 13 51
							 | 
							ltmul1d | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( ( A / B ) + 1 ) < ( C / B ) <-> ( ( ( A / B ) + 1 ) x. B ) < ( ( C / B ) x. B ) ) )  | 
						
						
							| 54 | 
							
								49 53
							 | 
							mpbird | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( A / B ) + 1 ) < ( C / B ) )  | 
						
						
							| 55 | 
							
								5 10 14 24 54
							 | 
							lelttrd | 
							 |-  ( ( ( A e. RR /\ B e. RR+ /\ C e. RR ) /\ A < ( C - B ) ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							 |-  ( ( A e. RR /\ B e. RR+ /\ C e. RR ) -> ( A < ( C - B ) -> ( ( |_ ` ( A / B ) ) + 1 ) < ( C / B ) ) )  |