| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
| 2 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. RR ) |
| 3 |
|
simp3l |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
| 4 |
|
simp3r |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> 0 < C ) |
| 5 |
4
|
gt0ne0d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C =/= 0 ) |
| 6 |
3 5
|
rereccld |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / C ) e. RR ) |
| 7 |
|
recgt0 |
|- ( ( C e. RR /\ 0 < C ) -> 0 < ( 1 / C ) ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> 0 < ( 1 / C ) ) |
| 9 |
|
ltmul1 |
|- ( ( A e. RR /\ B e. RR /\ ( ( 1 / C ) e. RR /\ 0 < ( 1 / C ) ) ) -> ( A < B <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
| 10 |
1 2 6 8 9
|
syl112anc |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
| 11 |
1
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. CC ) |
| 12 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. CC ) |
| 13 |
11 12 5
|
divrecd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
| 14 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. CC ) |
| 15 |
14 12 5
|
divrecd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 16 |
13 15
|
breq12d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) < ( B / C ) <-> ( A x. ( 1 / C ) ) < ( B x. ( 1 / C ) ) ) ) |
| 17 |
10 16
|
bitr4d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A / C ) < ( B / C ) ) ) |