Metamath Proof Explorer


Theorem ltdiv1ii

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
ltmul1.3
|- C e. RR
ltmul1i.4
|- 0 < C
Assertion ltdiv1ii
|- ( A < B <-> ( A / C ) < ( B / C ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 ltmul1.3
 |-  C e. RR
4 ltmul1i.4
 |-  0 < C
5 1 2 3 ltdiv1i
 |-  ( 0 < C -> ( A < B <-> ( A / C ) < ( B / C ) ) )
6 4 5 ax-mp
 |-  ( A < B <-> ( A / C ) < ( B / C ) )