Step |
Hyp |
Ref |
Expression |
1 |
|
ltrec |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
2 |
1
|
3adant3 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
3 |
|
gt0ne0 |
|- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
4 |
|
rereccl |
|- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
5 |
3 4
|
syldan |
|- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
6 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
7 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
8 |
6 7
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
9 |
|
ltmul2 |
|- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
10 |
8 9
|
syl3an2 |
|- ( ( ( 1 / B ) e. RR /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
11 |
5 10
|
syl3an1 |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
12 |
|
recn |
|- ( C e. RR -> C e. CC ) |
13 |
12
|
adantr |
|- ( ( C e. RR /\ 0 < C ) -> C e. CC ) |
14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
15 |
14
|
adantr |
|- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
16 |
15 3
|
jca |
|- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
17 |
|
recn |
|- ( A e. RR -> A e. CC ) |
18 |
17
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
19 |
18 6
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
20 |
|
divrec |
|- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
21 |
20
|
3expb |
|- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
22 |
21
|
3adant3 |
|- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
23 |
|
divrec |
|- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
24 |
23
|
3expb |
|- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
25 |
24
|
3adant2 |
|- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
26 |
22 25
|
breq12d |
|- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
27 |
13 16 19 26
|
syl3an |
|- ( ( ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
28 |
27
|
3coml |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( C / B ) < ( C / A ) <-> ( C x. ( 1 / B ) ) < ( C x. ( 1 / A ) ) ) ) |
29 |
11 28
|
bitr4d |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C / B ) < ( C / A ) ) ) |
30 |
29
|
3com12 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) < ( 1 / A ) <-> ( C / B ) < ( C / A ) ) ) |
31 |
2 30
|
bitrd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |