Metamath Proof Explorer


Theorem ltdiv23ii

Description: Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
ltmul1.3
|- C e. RR
ltdiv23i.4
|- 0 < B
ltdiv23i.5
|- 0 < C
Assertion ltdiv23ii
|- ( ( A / B ) < C <-> ( A / C ) < B )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 ltmul1.3
 |-  C e. RR
4 ltdiv23i.4
 |-  0 < B
5 ltdiv23i.5
 |-  0 < C
6 1 2 3 ltdiv23i
 |-  ( ( 0 < B /\ 0 < C ) -> ( ( A / B ) < C <-> ( A / C ) < B ) )
7 4 5 6 mp2an
 |-  ( ( A / B ) < C <-> ( A / C ) < B )