Description: Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
||
| Assertion | ltdiv2d | |- ( ph -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
|
| 4 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 6 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
| 7 | ltdiv2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ph -> ( A < B <-> ( C / B ) < ( C / A ) ) ) |