Metamath Proof Explorer


Theorem ltesubnnd

Description: Subtracting an integer number from another number decreases it. See ltsubrpd . (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ltesubnnd.1
|- ( ph -> M e. ZZ )
ltesubnnd.2
|- ( ph -> N e. NN )
Assertion ltesubnnd
|- ( ph -> ( ( M + 1 ) - N ) <_ M )

Proof

Step Hyp Ref Expression
1 ltesubnnd.1
 |-  ( ph -> M e. ZZ )
2 ltesubnnd.2
 |-  ( ph -> N e. NN )
3 1 zcnd
 |-  ( ph -> M e. CC )
4 1cnd
 |-  ( ph -> 1 e. CC )
5 2 nncnd
 |-  ( ph -> N e. CC )
6 3 4 5 addsubd
 |-  ( ph -> ( ( M + 1 ) - N ) = ( ( M - N ) + 1 ) )
7 1 zred
 |-  ( ph -> M e. RR )
8 2 nnrpd
 |-  ( ph -> N e. RR+ )
9 7 8 ltsubrpd
 |-  ( ph -> ( M - N ) < M )
10 2 nnzd
 |-  ( ph -> N e. ZZ )
11 1 10 zsubcld
 |-  ( ph -> ( M - N ) e. ZZ )
12 zltp1le
 |-  ( ( ( M - N ) e. ZZ /\ M e. ZZ ) -> ( ( M - N ) < M <-> ( ( M - N ) + 1 ) <_ M ) )
13 11 1 12 syl2anc
 |-  ( ph -> ( ( M - N ) < M <-> ( ( M - N ) + 1 ) <_ M ) )
14 9 13 mpbid
 |-  ( ph -> ( ( M - N ) + 1 ) <_ M )
15 6 14 eqbrtrd
 |-  ( ph -> ( ( M + 1 ) - N ) <_ M )