| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
| 2 |
|
oveq2 |
|- ( x = M -> ( A ^ x ) = ( A ^ M ) ) |
| 3 |
|
oveq2 |
|- ( x = N -> ( A ^ x ) = ( A ^ N ) ) |
| 4 |
|
zssre |
|- ZZ C_ RR |
| 5 |
|
simpl |
|- ( ( A e. RR /\ 1 < A ) -> A e. RR ) |
| 6 |
|
0red |
|- ( ( A e. RR /\ 1 < A ) -> 0 e. RR ) |
| 7 |
|
1red |
|- ( ( A e. RR /\ 1 < A ) -> 1 e. RR ) |
| 8 |
|
0lt1 |
|- 0 < 1 |
| 9 |
8
|
a1i |
|- ( ( A e. RR /\ 1 < A ) -> 0 < 1 ) |
| 10 |
|
simpr |
|- ( ( A e. RR /\ 1 < A ) -> 1 < A ) |
| 11 |
6 7 5 9 10
|
lttrd |
|- ( ( A e. RR /\ 1 < A ) -> 0 < A ) |
| 12 |
5 11
|
elrpd |
|- ( ( A e. RR /\ 1 < A ) -> A e. RR+ ) |
| 13 |
|
rpexpcl |
|- ( ( A e. RR+ /\ x e. ZZ ) -> ( A ^ x ) e. RR+ ) |
| 14 |
12 13
|
sylan |
|- ( ( ( A e. RR /\ 1 < A ) /\ x e. ZZ ) -> ( A ^ x ) e. RR+ ) |
| 15 |
14
|
rpred |
|- ( ( ( A e. RR /\ 1 < A ) /\ x e. ZZ ) -> ( A ^ x ) e. RR ) |
| 16 |
|
simpll |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. RR ) |
| 17 |
|
simprl |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
| 18 |
|
simprr |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
| 19 |
|
simplr |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> 1 < A ) |
| 20 |
|
ltexp2a |
|- ( ( ( A e. RR /\ x e. ZZ /\ y e. ZZ ) /\ ( 1 < A /\ x < y ) ) -> ( A ^ x ) < ( A ^ y ) ) |
| 21 |
20
|
expr |
|- ( ( ( A e. RR /\ x e. ZZ /\ y e. ZZ ) /\ 1 < A ) -> ( x < y -> ( A ^ x ) < ( A ^ y ) ) ) |
| 22 |
16 17 18 19 21
|
syl31anc |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x < y -> ( A ^ x ) < ( A ^ y ) ) ) |
| 23 |
1 2 3 4 15 22
|
ltord1 |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |
| 24 |
23
|
ancom2s |
|- ( ( ( A e. RR /\ 1 < A ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |
| 25 |
24
|
exp43 |
|- ( A e. RR -> ( 1 < A -> ( N e. ZZ -> ( M e. ZZ -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) ) ) ) |
| 26 |
25
|
com24 |
|- ( A e. RR -> ( M e. ZZ -> ( N e. ZZ -> ( 1 < A -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) ) ) ) |
| 27 |
26
|
3imp1 |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |