Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. RR ) |
2 |
|
0red |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 e. RR ) |
3 |
|
1red |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 e. RR ) |
4 |
|
0lt1 |
|- 0 < 1 |
5 |
4
|
a1i |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 < 1 ) |
6 |
|
simprl |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < A ) |
7 |
2 3 1 5 6
|
lttrd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 0 < A ) |
8 |
1 7
|
elrpd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. RR+ ) |
9 |
|
simpl2 |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> M e. ZZ ) |
10 |
|
rpexpcl |
|- ( ( A e. RR+ /\ M e. ZZ ) -> ( A ^ M ) e. RR+ ) |
11 |
8 9 10
|
syl2anc |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. RR+ ) |
12 |
11
|
rpred |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. RR ) |
13 |
12
|
recnd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) e. CC ) |
14 |
13
|
mulid2d |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( 1 x. ( A ^ M ) ) = ( A ^ M ) ) |
15 |
|
simprr |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> M < N ) |
16 |
|
simpl3 |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> N e. ZZ ) |
17 |
|
znnsub |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
18 |
9 16 17
|
syl2anc |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( M < N <-> ( N - M ) e. NN ) ) |
19 |
15 18
|
mpbid |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( N - M ) e. NN ) |
20 |
|
expgt1 |
|- ( ( A e. RR /\ ( N - M ) e. NN /\ 1 < A ) -> 1 < ( A ^ ( N - M ) ) ) |
21 |
1 19 6 20
|
syl3anc |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < ( A ^ ( N - M ) ) ) |
22 |
1
|
recnd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A e. CC ) |
23 |
7
|
gt0ne0d |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> A =/= 0 ) |
24 |
|
expsub |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( A ^ ( N - M ) ) = ( ( A ^ N ) / ( A ^ M ) ) ) |
25 |
22 23 16 9 24
|
syl22anc |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ ( N - M ) ) = ( ( A ^ N ) / ( A ^ M ) ) ) |
26 |
21 25
|
breqtrd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> 1 < ( ( A ^ N ) / ( A ^ M ) ) ) |
27 |
|
rpexpcl |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
28 |
8 16 27
|
syl2anc |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ N ) e. RR+ ) |
29 |
28
|
rpred |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ N ) e. RR ) |
30 |
3 29 11
|
ltmuldivd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( ( 1 x. ( A ^ M ) ) < ( A ^ N ) <-> 1 < ( ( A ^ N ) / ( A ^ M ) ) ) ) |
31 |
26 30
|
mpbird |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( 1 x. ( A ^ M ) ) < ( A ^ N ) ) |
32 |
14 31
|
eqbrtrrd |
|- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ ( 1 < A /\ M < N ) ) -> ( A ^ M ) < ( A ^ N ) ) |