Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A e. RR+ ) |
2 |
1
|
rpcnd |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A e. CC ) |
3 |
1
|
rpne0d |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A =/= 0 ) |
4 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> M e. ZZ ) |
5 |
|
exprec |
|- ( ( A e. CC /\ A =/= 0 /\ M e. ZZ ) -> ( ( 1 / A ) ^ M ) = ( 1 / ( A ^ M ) ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( 1 / A ) ^ M ) = ( 1 / ( A ^ M ) ) ) |
7 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> N e. ZZ ) |
8 |
|
exprec |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |
9 |
2 3 7 8
|
syl3anc |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |
10 |
6 9
|
breq12d |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) <-> ( 1 / ( A ^ M ) ) < ( 1 / ( A ^ N ) ) ) ) |
11 |
1
|
rprecred |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( 1 / A ) e. RR ) |
12 |
|
simpr |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> A < 1 ) |
13 |
1
|
reclt1d |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A < 1 <-> 1 < ( 1 / A ) ) ) |
14 |
12 13
|
mpbid |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> 1 < ( 1 / A ) ) |
15 |
|
ltexp2 |
|- ( ( ( ( 1 / A ) e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < ( 1 / A ) ) -> ( M < N <-> ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) ) ) |
16 |
11 4 7 14 15
|
syl31anc |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( M < N <-> ( ( 1 / A ) ^ M ) < ( ( 1 / A ) ^ N ) ) ) |
17 |
|
rpexpcl |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( A ^ N ) e. RR+ ) |
18 |
1 7 17
|
syl2anc |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A ^ N ) e. RR+ ) |
19 |
|
rpexpcl |
|- ( ( A e. RR+ /\ M e. ZZ ) -> ( A ^ M ) e. RR+ ) |
20 |
1 4 19
|
syl2anc |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( A ^ M ) e. RR+ ) |
21 |
18 20
|
ltrecd |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( ( A ^ N ) < ( A ^ M ) <-> ( 1 / ( A ^ M ) ) < ( 1 / ( A ^ N ) ) ) ) |
22 |
10 16 21
|
3bitr4d |
|- ( ( ( A e. RR+ /\ M e. ZZ /\ N e. ZZ ) /\ A < 1 ) -> ( M < N <-> ( A ^ N ) < ( A ^ M ) ) ) |