| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltexprlem.1 |  |-  C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } | 
						
							| 2 | 1 | ltexprlem5 |  |-  ( ( B e. P. /\ A C. B ) -> C e. P. ) | 
						
							| 3 |  | ltaddpr |  |-  ( ( A e. P. /\ C e. P. ) -> A  | 
						
							| 4 |  | addclpr |  |-  ( ( A e. P. /\ C e. P. ) -> ( A +P. C ) e. P. ) | 
						
							| 5 |  | ltprord |  |-  ( ( A e. P. /\ ( A +P. C ) e. P. ) -> ( A  A C. ( A +P. C ) ) ) | 
						
							| 6 | 4 5 | syldan |  |-  ( ( A e. P. /\ C e. P. ) -> ( A  A C. ( A +P. C ) ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( ( A e. P. /\ C e. P. ) -> A C. ( A +P. C ) ) | 
						
							| 8 | 7 | pssssd |  |-  ( ( A e. P. /\ C e. P. ) -> A C_ ( A +P. C ) ) | 
						
							| 9 | 8 | sseld |  |-  ( ( A e. P. /\ C e. P. ) -> ( w e. A -> w e. ( A +P. C ) ) ) | 
						
							| 10 | 9 | 2a1d |  |-  ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> ( w e. A -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 11 | 10 | com4r |  |-  ( w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 12 | 11 | expd |  |-  ( w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) | 
						
							| 13 |  | prnmadd |  |-  ( ( B e. P. /\ w e. B ) -> E. v ( w +Q v ) e. B ) | 
						
							| 14 | 13 | ex |  |-  ( B e. P. -> ( w e. B -> E. v ( w +Q v ) e. B ) ) | 
						
							| 15 |  | elprnq |  |-  ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w +Q v ) e. Q. ) | 
						
							| 16 |  | addnqf |  |-  +Q : ( Q. X. Q. ) --> Q. | 
						
							| 17 | 16 | fdmi |  |-  dom +Q = ( Q. X. Q. ) | 
						
							| 18 |  | 0nnq |  |-  -. (/) e. Q. | 
						
							| 19 | 17 18 | ndmovrcl |  |-  ( ( w +Q v ) e. Q. -> ( w e. Q. /\ v e. Q. ) ) | 
						
							| 20 | 15 19 | syl |  |-  ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. /\ v e. Q. ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( B e. P. /\ ( w +Q v ) e. B ) -> w e. Q. ) | 
						
							| 22 |  | vex |  |-  v e. _V | 
						
							| 23 | 22 | prlem934 |  |-  ( A e. P. -> E. z e. A -. ( z +Q v ) e. A ) | 
						
							| 24 | 23 | adantr |  |-  ( ( A e. P. /\ C e. P. ) -> E. z e. A -. ( z +Q v ) e. A ) | 
						
							| 25 |  | prub |  |-  ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> z  | 
						
							| 26 |  | ltexnq |  |-  ( w e. Q. -> ( z  E. x ( z +Q x ) = w ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( z  E. x ( z +Q x ) = w ) ) | 
						
							| 28 | 25 27 | sylibd |  |-  ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( A e. P. /\ z e. A ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) | 
						
							| 30 | 29 | ad2ant2r |  |-  ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) | 
						
							| 31 |  | vex |  |-  z e. _V | 
						
							| 32 |  | vex |  |-  x e. _V | 
						
							| 33 |  | addcomnq |  |-  ( f +Q g ) = ( g +Q f ) | 
						
							| 34 |  | addassnq |  |-  ( ( f +Q g ) +Q h ) = ( f +Q ( g +Q h ) ) | 
						
							| 35 | 31 22 32 33 34 | caov32 |  |-  ( ( z +Q v ) +Q x ) = ( ( z +Q x ) +Q v ) | 
						
							| 36 |  | oveq1 |  |-  ( ( z +Q x ) = w -> ( ( z +Q x ) +Q v ) = ( w +Q v ) ) | 
						
							| 37 | 35 36 | eqtrid |  |-  ( ( z +Q x ) = w -> ( ( z +Q v ) +Q x ) = ( w +Q v ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( ( z +Q x ) = w -> ( ( ( z +Q v ) +Q x ) e. B <-> ( w +Q v ) e. B ) ) | 
						
							| 39 | 38 | biimpar |  |-  ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( ( z +Q v ) +Q x ) e. B ) | 
						
							| 40 |  | ovex |  |-  ( z +Q v ) e. _V | 
						
							| 41 |  | eleq1 |  |-  ( y = ( z +Q v ) -> ( y e. A <-> ( z +Q v ) e. A ) ) | 
						
							| 42 | 41 | notbid |  |-  ( y = ( z +Q v ) -> ( -. y e. A <-> -. ( z +Q v ) e. A ) ) | 
						
							| 43 |  | oveq1 |  |-  ( y = ( z +Q v ) -> ( y +Q x ) = ( ( z +Q v ) +Q x ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( y = ( z +Q v ) -> ( ( y +Q x ) e. B <-> ( ( z +Q v ) +Q x ) e. B ) ) | 
						
							| 45 | 42 44 | anbi12d |  |-  ( y = ( z +Q v ) -> ( ( -. y e. A /\ ( y +Q x ) e. B ) <-> ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) ) ) | 
						
							| 46 | 40 45 | spcev |  |-  ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) | 
						
							| 47 | 1 | eqabri |  |-  ( x e. C <-> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> x e. C ) | 
						
							| 49 | 39 48 | sylan2 |  |-  ( ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> x e. C ) | 
						
							| 50 |  | df-plp |  |-  +P. = ( x e. P. , w e. P. |-> { z | E. f e. x E. v e. w z = ( f +Q v ) } ) | 
						
							| 51 |  | addclnq |  |-  ( ( f e. Q. /\ v e. Q. ) -> ( f +Q v ) e. Q. ) | 
						
							| 52 | 50 51 | genpprecl |  |-  ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ x e. C ) -> ( z +Q x ) e. ( A +P. C ) ) ) | 
						
							| 53 | 49 52 | sylan2i |  |-  ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) ) -> ( z +Q x ) e. ( A +P. C ) ) ) | 
						
							| 54 | 53 | exp4d |  |-  ( ( A e. P. /\ C e. P. ) -> ( z e. A -> ( -. ( z +Q v ) e. A -> ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( z +Q x ) e. ( A +P. C ) ) ) ) ) | 
						
							| 55 | 54 | imp42 |  |-  ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( z +Q x ) e. ( A +P. C ) ) | 
						
							| 56 |  | eleq1 |  |-  ( ( z +Q x ) = w -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) | 
						
							| 57 | 56 | ad2antrl |  |-  ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) | 
						
							| 58 | 55 57 | mpbid |  |-  ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> w e. ( A +P. C ) ) | 
						
							| 59 | 58 | exp32 |  |-  ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) | 
						
							| 60 | 59 | exlimdv |  |-  ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( E. x ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) | 
						
							| 61 | 30 60 | syl6d |  |-  ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 62 | 24 61 | rexlimddv |  |-  ( ( A e. P. /\ C e. P. ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 63 | 62 | com14 |  |-  ( ( w +Q v ) e. B -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 64 | 63 | adantl |  |-  ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 65 | 21 64 | mpd |  |-  ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) | 
						
							| 66 | 65 | ex |  |-  ( B e. P. -> ( ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 67 | 66 | exlimdv |  |-  ( B e. P. -> ( E. v ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 68 | 14 67 | syld |  |-  ( B e. P. -> ( w e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 69 | 68 | com4t |  |-  ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 70 | 69 | expd |  |-  ( -. w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) | 
						
							| 71 | 12 70 | pm2.61i |  |-  ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 72 | 2 71 | syl5 |  |-  ( A e. P. -> ( ( B e. P. /\ A C. B ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 73 | 72 | expd |  |-  ( A e. P. -> ( B e. P. -> ( A C. B -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) | 
						
							| 74 | 73 | com34 |  |-  ( A e. P. -> ( B e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) | 
						
							| 75 | 74 | pm2.43d |  |-  ( A e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) | 
						
							| 76 | 75 | imp31 |  |-  ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> ( w e. B -> w e. ( A +P. C ) ) ) | 
						
							| 77 | 76 | ssrdv |  |-  ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> B C_ ( A +P. C ) ) |