Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
ltnegd.2 | |- ( ph -> B e. RR ) |
||
ltadd1d.3 | |- ( ph -> C e. RR ) |
||
lt2addd.4 | |- ( ph -> D e. RR ) |
||
ltleaddd.5 | |- ( ph -> A < C ) |
||
ltleaddd.6 | |- ( ph -> B <_ D ) |
||
Assertion | ltleaddd | |- ( ph -> ( A + B ) < ( C + D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | |- ( ph -> A e. RR ) |
|
2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
4 | lt2addd.4 | |- ( ph -> D e. RR ) |
|
5 | ltleaddd.5 | |- ( ph -> A < C ) |
|
6 | ltleaddd.6 | |- ( ph -> B <_ D ) |
|
7 | ltleadd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) ) |
|
8 | 1 2 3 4 7 | syl22anc | |- ( ph -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) ) |
9 | 5 6 8 | mp2and | |- ( ph -> ( A + B ) < ( C + D ) ) |