Metamath Proof Explorer


Theorem ltleaddd

Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
ltadd1d.3
|- ( ph -> C e. RR )
lt2addd.4
|- ( ph -> D e. RR )
ltleaddd.5
|- ( ph -> A < C )
ltleaddd.6
|- ( ph -> B <_ D )
Assertion ltleaddd
|- ( ph -> ( A + B ) < ( C + D ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 ltadd1d.3
 |-  ( ph -> C e. RR )
4 lt2addd.4
 |-  ( ph -> D e. RR )
5 ltleaddd.5
 |-  ( ph -> A < C )
6 ltleaddd.6
 |-  ( ph -> B <_ D )
7 ltleadd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) )
8 1 2 3 4 7 syl22anc
 |-  ( ph -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) )
9 5 6 8 mp2and
 |-  ( ph -> ( A + B ) < ( C + D ) )