Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltlecasei.1 | |- ( ( ph /\ A < B ) -> ps ) |
|
| ltlecasei.2 | |- ( ( ph /\ B <_ A ) -> ps ) |
||
| ltlecasei.3 | |- ( ph -> A e. RR ) |
||
| ltlecasei.4 | |- ( ph -> B e. RR ) |
||
| Assertion | ltlecasei | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltlecasei.1 | |- ( ( ph /\ A < B ) -> ps ) |
|
| 2 | ltlecasei.2 | |- ( ( ph /\ B <_ A ) -> ps ) |
|
| 3 | ltlecasei.3 | |- ( ph -> A e. RR ) |
|
| 4 | ltlecasei.4 | |- ( ph -> B e. RR ) |
|
| 5 | lelttric | |- ( ( B e. RR /\ A e. RR ) -> ( B <_ A \/ A < B ) ) |
|
| 6 | 4 3 5 | syl2anc | |- ( ph -> ( B <_ A \/ A < B ) ) |
| 7 | 2 1 6 | mpjaodan | |- ( ph -> ps ) |