Metamath Proof Explorer


Theorem ltled

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
ltled.1
|- ( ph -> A < B )
Assertion ltled
|- ( ph -> A <_ B )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 ltled.1
 |-  ( ph -> A < B )
4 ltle
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( A < B -> A <_ B ) )
6 3 5 mpd
 |-  ( ph -> A <_ B )