Metamath Proof Explorer


Theorem ltletri

Description: 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
lt.3
|- C e. RR
Assertion ltletri
|- ( ( A < B /\ B <_ C ) -> A < C )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 lt.3
 |-  C e. RR
4 ltletr
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B <_ C ) -> A < C ) )
5 1 2 3 4 mp3an
 |-  ( ( A < B /\ B <_ C ) -> A < C )