Step |
Hyp |
Ref |
Expression |
1 |
|
ltmod.a |
|- ( ph -> A e. RR ) |
2 |
|
ltmod.b |
|- ( ph -> B e. RR+ ) |
3 |
|
ltmod.c |
|- ( ph -> C e. ( ( A - ( A mod B ) ) [,) A ) ) |
4 |
1 2
|
modcld |
|- ( ph -> ( A mod B ) e. RR ) |
5 |
1 4
|
resubcld |
|- ( ph -> ( A - ( A mod B ) ) e. RR ) |
6 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
7 |
|
icossre |
|- ( ( ( A - ( A mod B ) ) e. RR /\ A e. RR* ) -> ( ( A - ( A mod B ) ) [,) A ) C_ RR ) |
8 |
5 6 7
|
syl2anc |
|- ( ph -> ( ( A - ( A mod B ) ) [,) A ) C_ RR ) |
9 |
8 3
|
sseldd |
|- ( ph -> C e. RR ) |
10 |
2
|
rpred |
|- ( ph -> B e. RR ) |
11 |
9 2
|
rerpdivcld |
|- ( ph -> ( C / B ) e. RR ) |
12 |
11
|
flcld |
|- ( ph -> ( |_ ` ( C / B ) ) e. ZZ ) |
13 |
12
|
zred |
|- ( ph -> ( |_ ` ( C / B ) ) e. RR ) |
14 |
10 13
|
remulcld |
|- ( ph -> ( B x. ( |_ ` ( C / B ) ) ) e. RR ) |
15 |
5
|
rexrd |
|- ( ph -> ( A - ( A mod B ) ) e. RR* ) |
16 |
|
icoltub |
|- ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,) A ) ) -> C < A ) |
17 |
15 6 3 16
|
syl3anc |
|- ( ph -> C < A ) |
18 |
9 1 14 17
|
ltsub1dd |
|- ( ph -> ( C - ( B x. ( |_ ` ( C / B ) ) ) ) < ( A - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
19 |
|
icossicc |
|- ( ( A - ( A mod B ) ) [,) A ) C_ ( ( A - ( A mod B ) ) [,] A ) |
20 |
19 3
|
sselid |
|- ( ph -> C e. ( ( A - ( A mod B ) ) [,] A ) ) |
21 |
1 2 20
|
lefldiveq |
|- ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) ) |
22 |
21
|
eqcomd |
|- ( ph -> ( |_ ` ( C / B ) ) = ( |_ ` ( A / B ) ) ) |
23 |
22
|
oveq2d |
|- ( ph -> ( B x. ( |_ ` ( C / B ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
24 |
23
|
oveq2d |
|- ( ph -> ( A - ( B x. ( |_ ` ( C / B ) ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
25 |
18 24
|
breqtrd |
|- ( ph -> ( C - ( B x. ( |_ ` ( C / B ) ) ) ) < ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
26 |
|
modval |
|- ( ( C e. RR /\ B e. RR+ ) -> ( C mod B ) = ( C - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
27 |
9 2 26
|
syl2anc |
|- ( ph -> ( C mod B ) = ( C - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
28 |
|
modval |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
29 |
1 2 28
|
syl2anc |
|- ( ph -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
30 |
25 27 29
|
3brtr4d |
|- ( ph -> ( C mod B ) < ( A mod B ) ) |