Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
recn |
|- ( C e. RR -> C e. CC ) |
3 |
|
mulcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) = ( C x. A ) ) |
5 |
4
|
adantrr |
|- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) = ( C x. A ) ) |
6 |
5
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) = ( C x. A ) ) |
7 |
6
|
breq1d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> ( C x. A ) < B ) ) |
8 |
|
ltmuldiv |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> A < ( B / C ) ) ) |
9 |
7 8
|
bitr3d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. A ) < B <-> A < ( B / C ) ) ) |