| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltmulgt11 |  |-  ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( A x. B ) ) ) | 
						
							| 2 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | mulcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( A x. B ) = ( B x. A ) ) | 
						
							| 7 | 6 | breq2d |  |-  ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( A < ( A x. B ) <-> A < ( B x. A ) ) ) | 
						
							| 8 | 1 7 | bitrd |  |-  ( ( A e. RR /\ B e. RR /\ 0 < A ) -> ( 1 < B <-> A < ( B x. A ) ) ) |